Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9867-9876, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571211

RESUMO

Orbit-induced localized spin angular momentum (OILS) has recently garnered significant attention. This paper introduces periodic edge dislocation (PED) into the tight focusing system. The study delves into the tight focusing characteristics of the radially polarized vortex plane beam with PED, demonstrating that PED serves as a straightforward and effective means of manipulating OILS, especially when both the orbital angular momentum and the polarization of the incident beam are fixed. Our findings indicate that the longitudinal OILS reaches its maximum when the difference between the period of PED and the vortex topological charge is equal to 1. Conversely, when the difference is 0, the transverse OILS reaches its maximum, while the longitudinal OILS reaches its minimum. Similar patterns are also observed in linearly polarized vortex beams. This research proposes a simple and practical way to control OILS, contributing to our understanding of optical orbit-spin coupling.

2.
Opt Express ; 31(17): 28122-28133, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710874

RESUMO

In this paper, one kind of multi-focusing electric and magnetic field which is sourced from an azimuthally polarized vortex circular hyperbolic umbilic beam (APVCHUB) is presented. After passing through a high NA objective, both the electric and magnetic fields of the APVCHUBs will focus multiple times, and a high-purity longitudinal magnetic field (p q =80%) will be generated. Besides, the mutual induction of the vortex phase and azimuthal polarization changes the electric and magnetic fields' vibration state and intensity distribution, making the longitudinal magnetic field carry an m-order concentric vortex. Our findings suggest that the APVCHUB could have potential applications in magnetic particle manipulation, extremely weak magnetic detection, data storage, semiconductor quantum dot excitation, etc.

3.
Opt Express ; 31(6): 9729-9738, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157536

RESUMO

We present what we belive to be a new band design in which self-assembled InAs quantum dots (QD) are embedded in InGaAs quantum wells (QW) to fabricate broadband single-core quantum dot cascade lasers (QDCLs) operating as frequency combs. The hybrid active region scheme was exploited to form upper hybrid QW/QD energy states and lower pure QD energy states, which expanded the total laser bandwidth by up to 55 cm-1 due to a broad gain medium provided by the inherent spectral inhomogeneity of self-assembled QDs. The continuous-wave (CW) output power of these devices was as high as 470 mW with optical spectra centered at ∼7 µm, which allowed CW operation at temperatures up to 45 °C . Remarkably, measurement of the intermode beatnote map revealed a clear frequency comb regime extending over a continuous 200 mA current range. Moreover, the modes were self-stabilized with intermode beatnote linewidths of approximately 1.6 kHz. Furthermore, what we believe to be a novel π-shaped electrode design and coplanar waveguide transition way were used for RF signal injection. We found that RF injection modified the laser spectral bandwidth by up to 62 cm-1. The developing characteristics indicate the potential for comb operation based on QDCLs as well as the realization of ultrafast mid-infrared pulse.

4.
Opt Express ; 31(25): 42677-42686, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087636

RESUMO

Microresonator-based high-speed single-mode quantum cascade lasers are ideal candidates for on-chip optical data interconnection and high sensitivity gas sensing in the mid-infrared spectral range. In this paper, we propose a high frequency operation of single-mode doughnut-shaped microcavity quantum cascade laser at ∼4.6 µm. By leveraging compact micro-ring resonators and integrating with grounded coplanar waveguide transmission lines, we have greatly reduced the parasitics originating from both the device and wire bonding. In addition, a selective heat dissipation scheme was introduced to improve the thermal characteristics of the device by semi-insulating InP infill regrowth. The highest continuous wave operating temperature of the device reaches 288 K. A maximum -3 dB bandwidth of 11 GHz and a cut-off frequency exceeding 20 GHz in a microwave rectification technique are obtained. Benefiting from the notch at the short axis of the microcavity resonator, a highly customized far-field profile with an in-plane beam divergence angle of 2.4° is achieved.

5.
Eur J Clin Microbiol Infect Dis ; 42(11): 1389-1394, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792119

RESUMO

This study aimed to determine the clinical characteristics and the prognostic risk factors in non-neutropenic patients with candidemia. Data were retrospectively collected through the medical record information system. Non-neutropenic patients with candidemia were relatively aged, with a more than one-third rate of in-hospitalization mortality. In multivariate analysis, APACHE II score (adjusted odds ratio [aOR], 1.138; 95% confidence interval [CI], 1.067-1.213), septic shock (aOR, 5.704; 95% CI, 2.639-12.326) and RRT (aOR, 16.152; 95% CI, 2.628-99.275) (all P < 0.01) were independent related with non-survivors. In conclusion, non-neutropenic patients with candidemia have a high in-hospitalization mortality, and APACHE II, septic shock, and RRT are independently factors.


Assuntos
Candidemia , Choque Séptico , Humanos , Idoso , Candidemia/diagnóstico , Candidemia/epidemiologia , Estudos Retrospectivos , Prognóstico , Choque Séptico/diagnóstico , Choque Séptico/epidemiologia , Choque Séptico/microbiologia , Fatores de Risco
6.
Small ; 18(34): e2106943, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35908810

RESUMO

Degraded population inversion (PI) at elevated temperature, regarded as an important temperature degradation factor in terahertz quantum cascade lasers (THz QCL), has hindered the widespread use of these devices. Herein, the mechanism of the temperature degradation of PI is investigated microscopically. It is demonstrated that the limited extraction efficiency of the extraction system dominates the decrease of PI at elevated temperatures. To be specific, the increased temperature brings about intense thermally activated longitudinal optical phonon scattering, leading to large amounts of electrons scattering to lower level state. In this case, the resonant-phonon extraction system is incapable of depleting all the electrons from lower level states. So even though the resonant-tunneling injection seems efficient enough to compensate the electron runoff at the upper state, the electron density at lower level state increases and the overall PI turns out lower. In addition, it is found that strong electron-ionized donor separation at high temperature can induce level misalignment, which can stagger the optimal conditions of injection and extraction. Also, the extraction efficiency gets lower as the extraction system requires accurate coupling between several energy levels.


Assuntos
Lasers Semicondutores , Radiação Terahertz , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
7.
Opt Express ; 30(4): 5848-5854, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209538

RESUMO

Distributed feedback quantum cascade lasers emitting at a wavelength of 6.12 µm are reported. Benefitted from the optimized materials epitaxy and the modified bound to continuum transition active region design along with three pairs of phonon scattering, high device performance is achieved. For a 2-mm-long, 8.4-µm-wide device, the threshold current is as low as 130 mA, the corresponding threshold current density is only 0.77 kA/cm2, and the optical output power is 69 mW at 20 °C in continuous wave mode. The temperature of continuous wave operation can reach 100 °C, where the optical output power is still more than 8 mW. In addition, it maintains a stable single mode operation from 20 to 100 °C without mode hopping, corresponding to a total wavelength shift of 41 nm. Such low-threshold quantum cascade lasers are highly beneficial to portable and highly integrated system sensor applications.

8.
Opt Express ; 30(13): 22671-22678, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224959

RESUMO

Micro-resonator-based lasers are well suited for high-density optoelectronic integration because of their small volumes and low thresholds. However, microcavity quantum cascade lasers for on-chip sensing have high thermal loads that make continuous-wave operation challenging. In this work, we designed an selective thermal dissipation scheme for the selective electrical isolation process to improve the thermal conductivity of the devices. The lasers operated at 50 °C, with 4.7-µm emission. They were fabricated as a notched elliptical resonator, resulting in a highly unidirectional far-field profile with an in-plane beam divergence of 1.9°. Overall, these directional-emission quantum cascade lasers pave the way for portable and highly integrated sensing applications.

9.
Opt Express ; 30(20): 36783-36790, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258600

RESUMO

Increasing the power of a quantum cascade laser by widening laser ridges will lead to the degradation of the beam quality because of the operation of high-order transverse modes. We report on a phase-locked array scheme of terahertz quantum cascade laser (THz QCL) utilizing Talbot effect. By adjusting the absorbing boundary width of each ridge in the array, stable operation of the fundamental supermode is realized. A five-element array shows 4 times power amplification than that of a single ridge device. Due to the large power amplification efficiency, stable mode selection, and simple fabricating process, the phase-locked array scheme is very promising to further improve the performance of THz QCL.

10.
Opt Express ; 30(22): 40657-40665, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298996

RESUMO

On-chip sensors based on quantum cascade laser technology are attracting broad attention because of their extreme compactness and abundant absorption fingerprints in the mid-infrared wavelength range. Recent continuous wave operation microcavity quantum cascade lasers are well suited for high-density optoelectronic integration because their volumes are small and thresholds are low. In this experimental work, we demonstrate a monolithically integrated sensor comprising a notched elliptical resonator as transmitter, a quantum cascade detector as receiver, and a surface plasmon structure as light-sensing waveguide. The sensor structure is designed to exploit the highly unidirectional lasing properties of the notched elliptical resonator to increase the optical absorption path length. Combined with the evanescent nature of the dielectric loaded surface plasmon polariton waveguides, the structure also ensures a strong light-matter interactions. The sensing transmission distance obtained is approximately 1.16 mm, which is about one order of magnitude improvement over the traditional Fabry-Perot waveguide. This sensor opens new opportunities for long-range and high-sensitivity on-chip gas sensing and spectroscopy.

11.
Opt Express ; 30(21): 37272-37280, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258318

RESUMO

We demonstrate a high power InP-based quantum cascade laser (QCL) (λ ∼ 9 µm) with high characteristic temperature grown by metalorganic chemical vapor deposition (MOCVD) in this article. A 4-mm-long cavity length, 10.5-µm-wide ridge QCL with high-reflection (HR) coating demonstrates a maximum pulsed peak power of 1.55 W and continuous-wave (CW) output power of 1.02W at 293 K. The pulsed threshold current density of the device is as low as 1.52 kA/cm2. The active region adopted a dual-upper-state (DAU) and multiple-lower-state (MS) design and it shows a wide electroluminescence (EL) spectrum with 466 cm-1 wide full-width at half maximum (FWHM). In addition, the device performance is insensitive to the temperature change since the threshold-current characteristic temperature coefficient, T0, is as high as 228 K, and slope-efficiency characteristic temperature coefficient, T1, is as high as 680 K, over the heatsink-temperature range of 293 K to 353 K.

12.
Opt Express ; 30(22): 40704-40711, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36299000

RESUMO

In this article, we report a high power quantum cascade laser (QCL) at λ∼7.4 µm with a broad tuning range. By carefully designing and optimizing the active region and waveguide structure, a continuous-wave (CW) output power up to 1.36 W and 0.5 W is achieved at 293 K and 373 K which shows the excellent temperature stability. A high wall-plug efficiency (WPE) of 8% and 13.6% in CW and pulsed mode at 293 K are demonstrated. The laser shows a characteristic temperature T0 of 224 K and T1 of 381 K over a temperature range from 283 K to 373 K. In addition, a far field of pure zero order transverse mode and a fairly wide external cavity (EC) tuning range (280 cm-1) from 6.54 µm to 8 µm are achieved in pulsed operation. In addition, an EC single mode output power of 226 mW is obtained under CW operation at 293K.

13.
Opt Express ; 30(16): 29007-29014, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299085

RESUMO

A second-order distributed feedback interband cascade laser emitting at 3.25 µm was designed, grown, and fabricated. By coherent epitaxy of a GaSb cap layer instead of the conventional thin InAs cap on top of the laser structure, a high-quality surface grating was made of GaSb and gold. Enough coupling strength and a significant inter-modal loss difference were predicted according to the simulation within the framework of couple-wave theory. Lasers having 2-mm-long cavities and 4.5-µm-wide ridges with high-/anti-reflection coatings were fabricated. The continuous-wave threshold current and maximum single-mode output power were 60 mA and 24 mW at 20°C, respectively. The output power of 5 mW was still kept at 55°C. Continuous tuning free from mode hopping and high single-mode suppression ratios (>20 dB) were realized at all injection currents and heat-sink temperatures, covering a spectral range of over 20 cm-1.

14.
Ann Clin Microbiol Antimicrob ; 21(1): 45, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320023

RESUMO

PURPOSE: The mixed Candida/bacterial bloodstream infections (mixed C/B-BSIs) is worthy of particular attention recently, and we analyzed the incidence, co-pathogens, clinical characteristics, risk factors, and outcomes of mixed C/B-BSIs compared with monomicrobial candidemia (mono-candidemia) in adult patients in China. METHODS: All hospitalized adults with candidemia were recruited for this retrospective observational study from January 1, 2013, to December 31, 2019. RESULTS: Of the 296 patients with candidemia, 78 cases (26.3%) were mixed C/B-BSIs. Candida albicans (C. albicans) was the most common Candida species among all candidemia, and Klebsiella pneumoniae (K. pneumoniae) was the most concomitant bacteria (30.6%), followed by Acinetobacter baumannii (A. baumannii) (12.9%) and Enterococcus faecium (E. faecium) (11.8%) in mixed C/B-BSIs. In the multivariable analysis, prior ß-lactams exposure [adjusted odds ratio (aOR), 1.97; 95% confidence interval (CI), 1.01-3.87], burn injury (aOR, 6.35; 95% CI 1.82-22.21) and continuous renal replacement therapy (CRRT) (aOR, 3.00; 95% CI 1.46-6.17) were independent risk factors for mixed C/B-BSIs. Compared with mono-candidemia, patients with mixed C/B-BSIs developed with more proportion of septic shock (55.1% vs. 39.9%, P < 0.05), prolonged stay in ICU [22.0(12.0-57.0) vs. 9.5(0.0-37.0) days, P < 0.001] and longer mechanical ventilation time [19.0(4.5-40.8) vs. 6.0(0.0-24.8) days, P < 0.001]. The in-hospital mortality in patients with mixed C/B-BSIs was higher than those with mono-candidemia (59.0% vs. 34.9%, P < 0.001). Survival analysis revealed that 28-day and 60-day mortality were significantly higher in patients with mixed C/B-BSI than in those with mono-candidemia (57.7% vs. 31.7%, P < 0.001; 59.0% vs. 34.9%, P < 0.001; respectively). CONCLUSIONS: There is a high rate of mixed C/B-BSIs cases among candidemia, and K. pneumoniae is the predominant coexisting species. Prior ß-lactams exposure, burn injury, and CRRT are independent risk factors for mixed C/B-BSIs. The mortality of patients with mixed C/B-BSIs is significantly higher than those with mono-candidemia, this deserves further attention for clinicians.


Assuntos
Infecções Bacterianas , Candidemia , Candidíase , Coinfecção , Adulto , Humanos , Candida , Estudos Retrospectivos , Incidência , Candidíase/microbiologia , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candidemia/microbiologia , Candida albicans , Fatores de Risco , Klebsiella pneumoniae , Bactérias , beta-Lactamas/uso terapêutico
15.
Appl Opt ; 61(10): 2757-2762, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471350

RESUMO

In this paper, a novel, to the best of our knowledge, monolithic non-mechanical semiconductor laser scanner in the mid-infrared (MIR) spectrum is proposed. A deflector above the active region at the substrate side is used for coupling the vertical light into a lateral substrate waveguide, which creates a chain of coherent emitters such as optical phased arrays (OPAs) for beam steering. The numerical simulation reveals that GaSb-based surface-emitting interband cascade lasers (SE-ICLs) are an excellent platform for waveguide scanner integration. Due to the hundreds of micrometers of optical path difference and the narrow gap between each emitter, an extremely high angle tuning coefficient of 0.84°/nm covering the whole 28.6° steering range is obtained. This work theoretically verifies the feasibility of integrating an OPA scanner into the GaSb-based SE-ICLs, providing a practical solution to fabricate compact steerable MIR laser sources. Note that this substrate OPA concept has strong adaptation potential to extend to even longer wavelength devices such as InP and GaAs-based quantum cascade lasers.

16.
J Cell Physiol ; 236(9): 6726-6741, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33611789

RESUMO

Thrombocytopenia is a common complication of human cytomegalovirus (HCMV) infection in immunocompromised hosts, which contributes to poor prognosis even in patients receiving antiviral treatment. Here, we investigated the megakaryo/thrombopoiesis process, including the involvement of the c-Mpl/IEX-1 pathway, after HCMV infection, identified receptors mediating the interaction between megakaryocytes (MKs) and HCMV, and explored novel therapeutic targets. Our data shows that HCMV directly infects megakaryocytes in patients with HCMV DNAemia and influences megakaryopoiesis via the c-Mpl/IEX-1 pathway throughout megakaryocyte maturation, apoptosis, and platelet generation in vivo and in vitro. After treatment with inhibitors of PDGFRα and αvß3, the HCMV infection rate in MKs was significantly reduced, suggesting that IMC-3G3 and anti-αvß3 are potential therapeutic alternatives for viral infection. In summary, our study proposes a possible mechanism and potential treatments for thrombocytopenia caused by HCMV infection and other viral diseases associated with abnormal hemostasis.


Assuntos
Citomegalovirus/fisiologia , Transplante de Células-Tronco Hematopoéticas , Integrina alfaVbeta3/metabolismo , Megacariócitos/virologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Trombopoetina/metabolismo , Transdução de Sinais , Trombopoese , Adolescente , Adulto , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Citomegalovirus/ultraestrutura , Infecções por Citomegalovirus/patologia , Regulação para Baixo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Ploidias , Fatores de Risco , Receptor 2 Toll-Like/metabolismo , Transplante Homólogo , Adulto Jovem
17.
Opt Express ; 29(24): 39376-39383, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809303

RESUMO

A dual-wavelength quantum cascade laser (QCL) with two shallow-etched distributed Bragg reflectors is designed and fabricated. Based on a heterogeneous active region within a single waveguide, single-mode emission at 7.6µm and 8.2µm was achieved. The two wavelengths can be independently controlled by selective current injection on different regions of the device, which are electrically isolated. High optical powers of about 275mW and 218mW at room temperature were obtained for the single-mode emission at 7.6µm and 8.2µm, respectively. The presented design concept for high power, dual-wavelength switchable, mid-infrared QCLs is significant in developing miniaturized multi-species gas detection systems.

18.
Opt Express ; 29(23): 37327-37335, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808807

RESUMO

We have demonstrated a mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity. By optimizing the size of patches, the coupling wavelength of the antenna-coupled microcavity can be conveniently tuned to match the targeted intersubband transition energy. At 77 K, the peak responsivity of our detector is 4.1 mA/W for long wave (10.4 µm) and 0.6 mA/W for mid wave (5.8 µm), while the detectivity is 1.8×109 cm·Hz1/2/W (Jones) and 2.6×108 cm·Hz1/2/W (Jones), respectively. Compared with a reference device with a 45° multi-pass geometry, the responsivity of our detector has been increased by a factor of 9.1 for the long wave and 2.7 for the mid wave. Our results illustrate how to realize a dual-color infrared detector and improve the optoelectronic performance through the concept of antenna-coupled microcavity.

19.
Am J Hematol ; 96(5): 561-570, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33606900

RESUMO

Globally, postpartum hemorrhage (PPH) is the leading cause of maternal death. Women with immune thrombocytopenia (ITP) are at increased risk of developing PPH. Early identification of PPH helps to prevent adverse outcomes, but is underused because clinicians do not have a tool to predict PPH for women with ITP. We therefore conducted a nationwide multicenter retrospective study to develop and validate a prediction model of PPH in patients with ITP. We included 432 pregnant women (677 pregnancies) with primary ITP from 18 academic tertiary centers in China from January 2008 to August 2018. A total of 157 (23.2%) pregnancies experienced PPH. The derivation cohort included 450 pregnancies. For the validation cohort, we included 117 pregnancies in the temporal validation cohort and 110 pregnancies in the geographical validation cohort. We assessed 25 clinical parameters as candidate predictors and used multivariable logistic regression to develop our prediction model. The final model included seven variables and was named MONITOR (maternal complication, WHO bleeding score, antepartum platelet transfusion, placental abnormalities, platelet count, previous uterine surgery, and primiparity). We established an easy-to-use risk heatmap and risk score of PPH based on the seven risk factors. We externally validated this model using both a temporal validation cohort and a geographical validation cohort. The MONITOR model had an AUC of 0.868 (95% CI 0.828-0.909) in internal validation, 0.869 (95% CI 0.802-0.937) in the temporal validation, and 0.811 (95% CI 0.713-0.908) in the geographical validation. Calibration plots demonstrated good agreement between MONITOR-predicted probability and actual observation in both internal validation and external validation. Therefore, we developed and validated a very accurate prediction model for PPH. We hope that the model will contribute to more precise clinical care, decreased adverse outcomes, and better health care resource allocation.


Assuntos
Hemorragia Pós-Parto/etiologia , Complicações Hematológicas na Gravidez , Púrpura Trombocitopênica Idiopática/complicações , Adulto , Área Sob a Curva , China/epidemiologia , Estudos de Coortes , Suscetibilidade a Doenças , Registros Eletrônicos de Saúde , Feminino , Seguimentos , Previsões , Geografia Médica , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Imunossupressores/uso terapêutico , Recém-Nascido , Modelos Logísticos , Modelos Teóricos , Hemorragia Pós-Parto/epidemiologia , Hemorragia Pós-Parto/prevenção & controle , Prednisona/uso terapêutico , Gravidez , Resultado da Gravidez , Prognóstico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/terapia , Estudos Retrospectivos , Fatores de Risco , Centros de Atenção Terciária/estatística & dados numéricos
20.
Opt Express ; 28(26): 40155-40163, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379547

RESUMO

In this article, a InP based strain-balanced In0.58Ga0.42As/In0.47Al0.53As quantum cascade laser emitting at 7.7µm is reported. The active region is based on a slightly-diagonal bound to continuum design with 50 cascade stages and a low voltage defect Δinj of 96 meV. By optimizing the active region and waveguide structure, the waveguide loss αw of 1.18cm-1 are obtained, which contribute to a high wall-plug efficiency (WPE) of 9.08% and low threshold current of only 1.09 kA/cm2 in continuous-wave(CW) operation at 293K. The maximum single facet output power of 1.17W in CW operation and 2.3W in pulsed operation are measured at 293K. The narrow ridge and buried ridge structure epi-side-down-mounted on the diamond heatsink improved the heat dissipation of the device. A beam of pure zero order mode and a broad external-cavity tuning range from 7.16µm to 8.16µm are also achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA