Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Small ; 20(27): e2310915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38267813

RESUMO

Lithium dendrites are easily generated for excessively-solved lithium ions (Li+) inside the lithium metal batteries, which will lead serious safety issues. In this experiment, carbon spheres (CS) are successfully anchored on TiO2 (CS@TiO2) in the hydrothermal polymerization, which is filtrated on the commercial PE separator (CS@TiO2@PE). The negative charge in CS can suppress random diffusion of anions through electrostatic interactions. Density functional theory (DFT) calculations show that CS contributes to the desolvation of Li+, thereby increasing the migration rate of Li+. Furthermore, TiO2 exhibits high affinity to liquid electrolytes and acts as a physical barrier to lithium dendrite formation. CS@TiO2 is a combination of the advantages of CS and TiO2. As results, the Li+ transference number of the CS@TiO2@PE separator can be promoted to 0.63. The Li||Li cell with the CS@TiO2@PE separator exhibits a stable cycle performance for more than 600 h and lower polarization voltage (17 mV) at 1 mA cm-2. The coulombic efficiency (CE) of the Li||Cu cells employe the CS@TiO2@PE separator is 81.63% over 130 cycles. The discharge capacity of LiFePO4||Li cells based on the CS@TiO2@PE separator is 1.73 mAh (capacity retention = 91.53% after 260 cycles). Thus, the CS@TiO2 layer inhibits lithium dendrite formation.

2.
J Colloid Interface Sci ; 636: 317-327, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638571

RESUMO

The ion transport channel constructed by the separator is crucial for the practical performance of Li-ion batteries, including cycling stability and high rate capability under high current. Traditional polyolefin separator is the storage of electrolyte, which guarantees the internal ion transport process. However, its weak interaction with electrolyte and low cationic transport capacity limit the application of lithium ion battery in large current. In this study, a kind of core-shell structured polyacrylonitrile (PAN)/polyvinylidene fluoride (PVDF) nanofiber separator composed of PAN core and PVDF shell was prepared by coaxial electrospinning technique. As a result, the mechanical strength of PAN/PVDF nanofiber separator is increased from 0.6 MPa of PVDF to 3.6 MPa for PAN core. Furthermore, PAN/PVDF nanofiber separator exhibits an improved lithium-ion transference number (0.66), which is resulted from F functional groups of PVDF shell. It is believed that the interactions between the lithium ion and F functional group could construct a fast ion transport channel. The LiCoO2/Li half-cells assembled with PAN/PVDF exhibited higher discharge capacity (5C) than those cells using pristine PVDF, PAN separators and polyethylene (PE) separator. It is worth mentioning that the cells with PAN/PVDF separator also have excellent cycle stability. This study provides a new idea about separator-design strategy for high-performance lithium-based battery.

3.
Mol Plant ; 8(6): 911-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731673

RESUMO

The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post-anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant species. The genes encoding fatty acid desaturases (Δ(15)GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exogenously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffective. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed GhΔ(15)FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatidilinositóis/biossíntese , Ácido alfa-Linolênico/metabolismo , Vias Biossintéticas , Fibras na Dieta/análise , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Proteomics ; 114: 16-27, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25449837

RESUMO

An iTRAQ-based proteomics of ovules from the upland cotton species Gossypium hirsutum and its fuzzless-lintless mutant was performed, and finally 2729 proteins that preferentially accumulated at anthesis in wild-type ovules were identified. We confirmed that the gene expression levels of 2005 among these proteins also increased by performing an RNA sequencing transcriptomics. Expression of proteins involved in carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism was significantly enhanced in wild-type ovules. Quantitative real-time PCR verified the increased expression of 26 genes involved in these processes. Cotton 3-hydroxyacyl-CoA dehydratase (GhPAS2) catalyzing the third reaction of very long-chain fatty acid (VLCFA) biosynthesis, accumulated at anthesis in wild-type ovules. Heterogeneous expression of GhPAS2 restored viability to the Saccharomyces cerevisiae haploid psh1-deletion strain deficient in PAS2 activity. Application of VLCFA biosynthesis inhibitor acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methyl-phenyl]-acetamide; ACE) and gibberellic acid to the unfertilized cotton ovules significantly suppressed fiber cell protrusion. In this study, the profiling of gene expression at both transcriptome and proteome levels provides new insights into cotton fiber cell initiation. BIOLOGICAL SIGNIFICANCE: Cotton fiber initiation determines the ultimate number of fibers per ovule, thereby determining fiber yield. In total, 2729 proteins were preferentially accumulated in wild-type ovules at anthesis. The most up-regulated proteins were assigned to carboxylic acid metabolism, small-molecule metabolic processes, hormone regulation, and lipid metabolism. In consistence with these findings, we characterized GhPAS2 gene coding for the enzyme that catalyzes VLCFA production. VLCFA biosynthesis inhibitor, acetochlor, was shown to significantly suppress fiber initiation. This study provides a genome-scale transcriptomic and proteomic characterization of fiber initial cells, laying a solid basis for further investigation of the molecular processes governing fiber cell development.


Assuntos
Fibra de Algodão , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/metabolismo , Proteômica/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma , Transcriptoma
5.
Biointerphases ; 9(3): 031016, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25280857

RESUMO

Using low molecular weight chitosan nanoparticles (CNPs) prepared by an ionic gelation method, the authors report the effect of low-intensity pulsed ultrasound (US) on cell viability and nanoparticle uptake in cultured murine preosteoblasts. Particle size and zeta potential are measured using dynamic light scattering, and cell viability is evaluated using the of [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] assay. Results show that 30 min delivery of CNPs at 0.5 mg/mL is able to prevent loss of cell viability due to either serum starvation or subsequent exposure to US (1 W/cm(2) or 2 W/cm(2), up to 1 min). Additionally, flow cytometry data suggest that there is a close association between cellular membrane integrity and the presence of CNPs when US at 2 W/cm(2) is administered.


Assuntos
Quitosana/metabolismo , Nanopartículas/metabolismo , Osteoblastos/fisiologia , Osteoblastos/efeitos da radiação , Polifosfatos/metabolismo , Células-Tronco/fisiologia , Células-Tronco/efeitos da radiação , Animais , Materiais Biocompatíveis/metabolismo , Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Sobrevivência Celular , Células Cultivadas , Endocitose , Camundongos , Osteoblastos/metabolismo , Som , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA