Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423191

RESUMO

Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.


Assuntos
Epilepsia , Animais , Camundongos , Ansiedade , Suscetibilidade a Doenças/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo
2.
Mol Psychiatry ; 27(4): 2291-2303, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210569

RESUMO

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neurônios/metabolismo
3.
J Neurosci ; 41(44): 9235-9256, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34526390

RESUMO

Loss-of-function mutations in endosomal Na+/H+ exchanger 6 (NHE6) cause the X-linked neurologic disorder Christianson syndrome. Patients exhibit symptoms associated with both neurodevelopmental and neurodegenerative abnormalities. While loss of NHE6 has been shown to overacidify the endosome lumen, and is associated with endolysosome neuropathology, NHE6-mediated mechanisms in endosome trafficking and lysosome function have been understudied. Here, we show that NHE6-null mouse neurons demonstrate worsening lysosome function with time in culture, likely as a result of defective endosome trafficking. NHE6-null neurons exhibit overall reduced lysosomal proteolysis despite overacidification of the endosome and lysosome lumen. Akin to Nhx1 mutants in Saccharomyces cerevisiae, we observe decreased endosome-lysosome fusion in NHE6-null neurons. Also, we find premature activation of pH-dependent cathepsin D (CatD) in endosomes. While active CatD is increased in endosomes, CatD activation and CatD protein levels are reduced in the lysosome. Protein levels of another mannose 6-phosphate receptor (M6PR)-dependent enzyme, ß-N-acetylglucosaminidase, were also decreased in lysosomes of NHE6-null neurons. M6PRs accumulate in late endosomes, suggesting defective M6PR recycling and retromer function in NHE6-null neurons. Finally, coincident with decreased endosome-lysosome fusion, using total internal reflection fluorescence, we also find a prominent increase in fusion between endosomal multivesicular bodies and the plasma membrane, indicating enhanced exosome secretion from NHE6-null neurons. In summary, in addition to overacidification of endosomes and lysosomes, loss of NHE6 leads to defects in endosome maturation and trafficking, including enhanced exosome release, contributing to lysosome deficiency and potentially leading to neurodegenerative disease.SIGNIFICANCE STATEMENT Loss-of-function mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurologic disorder. Loss of NHE6 has been shown to overacidify endosomes; however, endosome trafficking mechanisms have been understudied, and the mechanisms leading to neurodegeneration are largely unknown. In NHE6-null mouse neurons in vitro, we find worsening lysosome function with days in culture. Notably, pH-dependent lysosome enzymes, such as cathepsin D, have reduced activity in lysosomes yet increased, precocious activity in endosomes in NHE6-null neurons. Further, endosomes show reduced fusion to lysosomes, and increased fusion to the plasma membrane with increased exosome release. This study identifies new mechanisms involving defective endosome maturation and trafficking that impair lysosome function in Christianson syndrome, likely contributing to neurodegeneration.


Assuntos
Ataxia/genética , Endossomos/metabolismo , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Lisossomos/metabolismo , Microcefalia/genética , Neurônios/metabolismo , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Catepsina D/metabolismo , Células Cultivadas , Hipocampo/citologia , Camundongos , Transporte Proteico , Proteólise , Trocadores de Sódio-Hidrogênio/deficiência , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Mol Cell ; 47(5): 707-21, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22857951

RESUMO

Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by MAPs represents a previously undiscovered mode of control of kinesin transport and provides a mechanism for regulation of MT-based transport by local signals.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Microtúbulos/metabolismo , Neurônios/citologia , Neuropeptídeos/deficiência , Proteínas Serina-Treonina Quinases/deficiência
5.
J Biol Chem ; 293(49): 18890-18902, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30291144

RESUMO

Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.


Assuntos
Dendritos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , Neuropeptídeos/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Sítios de Ligação , Células COS , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Dendritos/genética , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Endocitose/genética , Células HEK293 , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ratos
6.
Hum Genet ; 138(10): 1183-1200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31471722

RESUMO

The glutamate pyruvate transaminase 2 (GPT2) gene produces a nuclear-encoded mitochondrial enzyme that catalyzes the reversible transfer of an amino group from glutamate to pyruvate, generating alanine and alpha-ketoglutarate. Recessive mutations in GPT2 have been recently identified in a new syndrome involving intellectual and developmental disability (IDD), postnatal microcephaly, and spastic paraplegia. We have identified additional families with recessive GPT2 mutations and expanded the phenotype to include small stature. GPT2 loss-of-function mutations were identified in four families, nine patients total, including: a homozygous mutation in one child [c.775T>C (p.C259R)]; compound heterozygous mutations in two siblings [c.812A>C (p.N271T)/c.1432_1433delGT (p.V478Rfs*73)]; a novel homozygous, putative splicing mutation [c.1035C>T (p.G345=)]; and finally, a recurrent mutation, previously identified in a distinct family [c.1210C>T (p.R404*)]. All patients were diagnosed with IDD. A majority of patients had remarkably small stature throughout development, many < 1st percentile for height and weight. Given the potential biological function of GPT2 in cellular growth, this phenotype is strongly suggestive of a newly identified clinical susceptibility. Further, homozygous GPT2 mutations manifested in at least 2 of 176 families with IDD (approximately 1.1%) in a Pakistani cohort, thereby representing a relatively common cause of recessive IDD in this population, with recurrence of the p.R404* mutation in this population. Based on variants in the ExAC database, we estimated that approximately 1 in 248 individuals are carriers of moderately or severely deleterious variants in GPT2.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Genes Recessivos , Predisposição Genética para Doença , Mutação , Fenótipo , Transaminases/genética , Adolescente , Alelos , Substituição de Aminoácidos , Deficiências do Desenvolvimento/metabolismo , Ativação Enzimática , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Genética Populacional , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Linhagem , Conformação Proteica , Sítios de Splice de RNA , Análise de Sequência de DNA , Relação Estrutura-Atividade , Transaminases/química , Transaminases/metabolismo
7.
Am J Med Genet A ; 179(11): 2284-2291, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403263

RESUMO

Aspartate-glutamate carrier 1 (AGC1) is one of two exchangers within the malate-aspartate shuttle. AGC1 is encoded by the SLC25A12 gene. Three patients with pathogenic variants in SLC25A12 have been reported in the literature. These patients were clinically characterized by neurodevelopmental delay, epilepsy, hypotonia, cerebral atrophy, and hypomyelination; however, there has been discussion in the literature as to whether this hypomyelination is primary or secondary to a neuronal defect. Here we report a 12-year-old patient with variants in SLC25A12 and magnetic resonance imaging (MRI) at multiple ages. Novel compound heterozygous, recessive variants in SLC25A12 were identified: c.1295C>T (p.A432V) and c.1447-2_1447-1delAG. Clinical presentation is characterized by severe intellectual disability, nonambulatory, nonverbal status, hypotonia, epilepsy, spastic quadriplegia, and a happy disposition. The serial neuroimaging findings are notable for cerebral atrophy with white matter involvement, namely, early hypomyelination yet subsequent progression of myelination. The longitudinal MRI findings are most consistent with a leukodystrophy of the leuko-axonopathy category, that is, white matter abnormalities that are most suggestive of mechanisms that result from primary neuronal defects. We present here the first case of a patient with compound heterozygous variants in SLC25A12, including brain MRI findings, in the oldest individual reported to date with this neurogenetic condition.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Imageamento por Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/genética , Fenótipo , Criança , Análise Mutacional de DNA , Diagnóstico Diferencial , Progressão da Doença , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Linhagem , Conformação Proteica , Relação Estrutura-Atividade
8.
Ann Neurol ; 82(1): 121-127, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556287

RESUMO

To characterize the mechanism of Zika virus (ZIKV)-associated microcephaly, we performed immunolabeling on brain tissue from a 20-week fetus with intrauterine ZIKV infection. Although ZIKV demonstrated a wide range of neuronal and non-neuronal tropism, the infection rate was highest in intermediate progenitor cells and immature neurons. Apoptosis was observed in both infected and uninfected bystander cortical neurons, suggesting a role for paracrine factors in induction of neuronal apoptosis. Our results highlight differential neuronal susceptibility and neuronal apoptosis as potential mechanisms in the development of ZIKV-associated microcephaly, and may provide insights into the design and best timing of future therapy. Ann Neurol 2017;82:121-127.


Assuntos
Feto/patologia , Feto/virologia , Neurônios/patologia , Neurônios/virologia , Infecção por Zika virus/patologia , Apoptose , Encéfalo/patologia , Encéfalo/virologia , Suscetibilidade a Doenças , Humanos , Infecção por Zika virus/virologia
9.
Ann Neurol ; 76(4): 581-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044251

RESUMO

OBJECTIVE: Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS. METHODS: Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized. RESULTS: The mutational spectrum was composed of 9 single nucleotide variants, 2 indels, and 1 copy number variation deletion. All mutations were protein-truncating or splicing mutations. We identified 2 recurrent mutations (c.1498 c>t, p.R500X; and c.1710 g>a, p.W570X). Otherwise, all mutations were unique. In our study, 7 of 12 mutations (58%) were de novo, in contrast to prior literature wherein mutations were largely inherited. We also report prominent neurological, medical, and behavioral symptoms. All CS participants were nonverbal and had intellectual disability, epilepsy, and ataxia. Many had prior diagnoses of autism and/or Angelman syndrome. Other neurologic symptoms included eye movement abnormalities (79%), postnatal microcephaly (92%), and magnetic resonance imaging evidence of cerebellar atrophy (33%). Regression was noted in 50%, with recurrent presentations involving loss of words and/or the ability to walk. Medical symptoms, particularly gastrointestinal symptoms, were common. Height and body mass index measures were below normal ranges in most participants. Behavioral symptoms included hyperkinetic behavior (100%), and a majority exhibited high pain threshold. INTERPRETATION: This is the largest cohort of independent CS pedigrees reported. We propose diagnostic criteria for CS. CS represents a novel neurogenetic disorder with general relevance to autism, intellectual disability, Angelman syndrome, epilepsy, and regression.


Assuntos
Ataxia/complicações , Ataxia/genética , Deficiências do Desenvolvimento/genética , Epilepsia/complicações , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Microcefalia/complicações , Microcefalia/genética , Mutação/genética , Transtornos da Motilidade Ocular/complicações , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Adolescente , Ataxia/patologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Progressão da Doença , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/patologia , Transtornos da Motilidade Ocular/patologia , Fenótipo , Análise de Regressão , Adulto Jovem
10.
J Neurosci ; 33(2): 709-21, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303949

RESUMO

Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.


Assuntos
Actinas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neurofilamentos/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Proteína 3 Relacionada a Actina/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Animais , Axônios/fisiologia , Western Blotting , Células Cultivadas , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Bases de Dados Factuais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Eletroforese em Gel de Poliacrilamida , Feminino , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Proteômica
11.
J Neurosci ; 32(22): 7439-53, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649224

RESUMO

Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose/fisiologia , Proteínas Associadas aos Microtúbulos/farmacologia , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Neuropeptídeos/farmacologia , Animais , Anquirinas/metabolismo , Moléculas de Adesão Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Polaridade Celular/genética , Células Cultivadas , Chlorocebus aethiops , Dendritos/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Imunoprecipitação , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Fatores de Crescimento Neural/genética , Neurônios/citologia , Neuropeptídeos/genética , Mutação Puntual/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Ratos , Canais de Sódio/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Transfecção
12.
Methods Mol Biol ; 2683: 213-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300778

RESUMO

Exosomes represent a class of extracellular vesicles (EVs) derived from the endocytic pathway that is important for cell-cell communication and implicated in the spread of pathogenic protein aggregates associated with neurological diseases. Exosomes are released extracellularly when multivesicular bodies (also known as late endosomes) fuse with the plasma membrane (PM). An important breakthrough in exosome research is the ability to capture MVB-PM fusion and exosome release simultaneously in individual cells using live-imaging microscopy techniques. Specifically, researchers have created a construct fusing CD63, a tetraspanin enriched in exosomes, with the pH-sensitive reporter pHluorin whereby CD63-pHluorin fluorescence is quenched in the acidic MVB lumen and only fluoresces when released into the less acidic extracellular environment. Here, we describe a method using this CD63-pHluorin construct to visualize MVB-PM fusion/exosome secretion in primary neurons using total internal reflection fluorescence (TIRF) microscopy.


Assuntos
Exossomos , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Fusão de Membrana , Comunicação Celular , Neurônios
13.
medRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37987014

RESUMO

Mutations in the X-linked endosomal Na+/H+ Exchanger 6 (NHE6) causes Christianson Syndrome (CS). In the largest study to date, we examine genetic diversity and clinical progression, including cerebellar degeneration, in CS into adulthood. Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. Forty-four individuals with 31 unique NHE6 mutations, age 2 to 32 years, were followed prospectively, herein reporting baseline, 1-year follow-up, and retrospective natural history. We present data on the CS phenotype with regard to physical growth, adaptive and motor regression, and across the lifespan, including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model: the rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined: a majority of adult (18+ years) participants lost gross and fine motor skills over a 1-year follow-up. Previously defined core diagnostic criteria for CS (present in >85%) - namely nonverbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia - were universally present in age 6 to 16; however, an additional core feature of high pain tolerance was added (present in 91%), and furthermore, evolution of symptoms were noted across the lifespan, such that postnatal microcephaly, ataxia and high pain threshold were often not apparent prior to age 6, and hyperkinesis decreased after age 16. While neurologic exams were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype, thereby identifying critical targets for treatment.

14.
Genes (Basel) ; 13(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140822

RESUMO

Epileptic encephalopathies may arise from single gene variants. In recent years, next-generation sequencing technologies have enabled an explosion of gene identification in monogenic epilepsies. One such example is the epileptic encephalopathy SLC13A5 deficiency disorder, which is caused by loss of function pathogenic variants to the gene SLC13A5 that results in deficiency of the sodium/citrate cotransporter. Patients typically experience seizure onset within the first week of life and have developmental delay and intellectual disability. Current antiseizure medications may reduce seizure frequency, yet more targeted treatments are needed to address the epileptic and non-epileptic features of SLC13A5 deficiency disorder. Gene therapy may offer hope to these patients and better clinical outcomes than current available treatments. Here, we discuss SLC13A5 genetics, natural history, available treatments, potential outcomes and assessments, and considerations for translational medical research for an AAV9-based gene replacement therapy.


Assuntos
Epilepsia , Simportadores , Citratos , Epilepsia/genética , Epilepsia/terapia , Terapia Genética , Humanos , Mutação , Convulsões/genética , Convulsões/terapia , Sódio , Espasmos Infantis , Simportadores/genética
15.
Curr Neurol Neurosci Rep ; 11(2): 171-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21222180

RESUMO

Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.


Assuntos
Malformações do Desenvolvimento Cortical do Grupo II/genética , Biologia Molecular , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular/fisiologia , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas Contráteis/genética , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas da Matriz Extracelular/genética , Filaminas , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Homeodomínio/genética , Humanos , Malformações do Desenvolvimento Cortical do Grupo II/patologia , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeos/genética , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidases/genética , Síndrome , Fatores de Transcrição/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
PLoS Genet ; 4(7): e1000111, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18604272

RESUMO

While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system.


Assuntos
Genoma , Neurônios/metabolismo , Interferência de RNA , Animais , Células Cultivadas , Drosophila/genética , Genômica , Camundongos , Sistema Nervoso/metabolismo , Fenótipo , RNA Interferente Pequeno , Proteína ran de Ligação ao GTP/metabolismo
17.
Trends Neurosci ; 44(6): 422-423, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965214

RESUMO

A recent paper by Zhang et al. shows that REV-ERBα, a negative regulator of the circadian molecular clock, is pro-convulsant through its action on GABA signaling. The findings support the role of the circadian molecular clock in epilepsy and suggest REV-ERBα as a potential therapeutic target for the management of seizures.


Assuntos
Relógios Circadianos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Ritmo Circadiano , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Convulsões , Transdução de Sinais
18.
Mol Biol Cell ; 32(5): 422-434, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33405953

RESUMO

Mutations in the doublecortin (DCX) gene, which encodes a microtubule (MT)-binding protein, cause human cortical malformations, including lissencephaly and subcortical band heterotopia. A deficiency in DCX and DCX-like kinase 1 (DCLK1), a functionally redundant and structurally similar cognate of DCX, decreases neurite length and increases the number of primary neurites directly arising from the soma. The underlying mechanism is not completely understood. In this study, the elongation of the somatic Golgi apparatus into proximal dendrites, which have been implicated in dendrite patterning, was significantly decreased in the absence of DCX/DCLK1. Phosphorylation of DCX at S47 or S327 was involved in this process. DCX deficiency shifted the distribution of CLASP2 proteins to the soma from the dendrites. In addition to CLASP2, dynein and its cofactor JIP3 were abnormally distributed in DCX-deficient neurons. The association between JIP3 and dynein was significantly increased in the absence of DCX. Down-regulation of CLASP2 or JIP3 expression with specific shRNAs rescued the Golgi phenotype observed in DCX-deficient neurons. We conclude that DCX regulates the elongation of the Golgi apparatus into proximal dendrites through MT-associated proteins and motors.


Assuntos
Dendritos/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Animais , Células Cultivadas , Dendritos/genética , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Complexo de Golgi/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Neuritos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
19.
Neuron ; 49(1): 41-53, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16387638

RESUMO

Although mutations in the human doublecortin gene (DCX) cause profound defects in cortical neuronal migration, a genetic deletion of Dcx in mice produces a milder defect. A second locus, doublecortin-like kinase (Dclk), encodes a protein with similar "doublecortin domains" and microtubule stabilization properties that may compensate for Dcx. Here, we generate a mouse with a Dclk mutation that causes no obvious migrational abnormalities but show that mice mutant for both Dcx and Dclk demonstrate perinatal lethality, disorganized neocortical layering, and profound hippocampal cytoarchitectural disorganization. Surprisingly, Dcx(-/y);Dclk(-/-) mutants have widespread axonal defects, affecting the corpus callosum, anterior commissure, subcortical fiber tracts, and internal capsule. Dcx/Dclk-deficient dissociated neurons show abnormal axon outgrowth and dendritic structure, with defects in axonal transport of synaptic vesicle proteins. Dcx and Dclk may directly or indirectly regulate microtubule-based vesicle transport, a process critical to both neuronal migration and axon outgrowth.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Neurônios/fisiologia , Neuropeptídeos/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Encéfalo/anormalidades , Encéfalo/embriologia , Anormalidades Congênitas/genética , Anormalidades Congênitas/mortalidade , Anormalidades Congênitas/patologia , Dendritos/ultraestrutura , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/fisiologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/deficiência , Neuropeptídeos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , RNA Mensageiro/metabolismo , Vesículas Sinápticas/metabolismo , Sobrevivência de Tecidos
20.
Nat Neurosci ; 23(4): 533-543, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203497

RESUMO

Learning disabilities are hallmarks of congenital conditions caused by prenatal exposure to harmful agents. These include fetal alcohol spectrum disorders (FASDs) with a wide range of cognitive deficiencies, including impaired motor skill development. Although these effects have been well characterized, the molecular effects that bring about these behavioral consequences remain to be determined. We previously found that the acute molecular responses to alcohol in the embryonic brain are stochastic, varying among neural progenitor cells. However, the pathophysiological consequences stemming from these heterogeneous responses remain unknown. Here we show that acute responses to alcohol in progenitor cells altered gene expression in their descendant neurons. Among the altered genes, an increase of the calcium-activated potassium channel Kcnn2 in the motor cortex correlated with motor learning deficits in a mouse model of FASD. Pharmacologic blockade of Kcnn2 improves these learning deficits, suggesting Kcnn2 blockers as a new intervention for learning disabilities in FASD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Deficiências da Aprendizagem/tratamento farmacológico , Aprendizagem/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Animais , Forma Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Modelos Animais de Doenças , Deficiências da Aprendizagem/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Córtex Motor/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Venenos de Escorpião/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA