Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(15): 8370-8375, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33507589

RESUMO

Nitrogen-doped Kagome graphene (N-KG) has been theoretically predicted as a candidate for the emergence of a topological band gap as well as unconventional superconductivity. However, its physical realization still remains very elusive. Here, we report on a substrate-assisted reaction on Ag(111) for the synthesis of two-dimensional graphene sheets possessing a long-range honeycomb Kagome lattice. Low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) with a CO-terminated tip supported by density functional theory (DFT) are employed to scrutinize the structural and electronic properties of the N-KG down to the atomic scale. We demonstrate its semiconducting character due to the nitrogen doping as well as the emergence of Kagome flat bands near the Fermi level which would open new routes towards the design of graphene-based topological materials.

2.
ACS Mater Lett ; 5(4): 1083-1090, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37034384

RESUMO

Obtaining a robust superconducting state in atomically precise nanographene (NG) structures by proximity to a superconductor could foster the discovery of topological superconductivity in graphene. On-surface synthesis of such NGs has been achieved on noble metals and metal oxides; however, it is still absent on superconductors. Here, we present a synthetic method to induce superconductivity of polymeric chains and NGs adsorbed on the superconducting Nb(110) substrate covered by thin Ag films. Using atomic force microscopy at low temperature, we characterize the chemical structure of each subproduct formed on the superconducting Ag layer. Scanning tunneling spectroscopy further allows us to elucidate the electronic properties of these nanostructures, which consistently show a superconducting gap.

3.
Nat Commun ; 14(1): 5956, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749099

RESUMO

Electron-vibration coupling is of critical importance for the development of molecular electronics, spintronics, and quantum technologies, as it affects transport properties and spin dynamics. The control over charge-state transitions and subsequent molecular vibrations using scanning tunneling microscopy typically requires the use of a decoupling layer. Here we show the vibronic excitations of tetrabromotetraazapyrene (TBTAP) molecules directly adsorbed on Ag(111) into an orientational glassy phase. The electron-deficient TBTAP is singly-occupied by an electron donated from the substrate, resulting in a spin 1/2 state, which is confirmed by a Kondo resonance. The TBTAP•- discharge is controlled by tip-gating and leads to a series of peaks in scanning tunneling spectroscopy. These occurrences are explained by combining a double-barrier tunneling junction with a Franck-Condon model including molecular vibrational modes. This work demonstrates that suitable precursor design enables gate-dependent vibrational excitations of molecules on a metal, thereby providing a method to investigate electron-vibration coupling in molecular assemblies without a decoupling layer.

4.
Beilstein J Nanotechnol ; 13: 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35059274

RESUMO

Topological superconductivity emerging in one- or two-dimensional hybrid materials is predicted as a key ingredient for quantum computing. However, not only the design of complex heterostructures is primordial for future applications but also the characterization of their electronic and structural properties at the atomic scale using the most advanced scanning probe microscopy techniques with functionalized tips. We report on the topographic signatures observed by scanning tunneling microscopy (STM) of carbon monoxide (CO) molecules, iron (Fe) atoms and sodium chloride (NaCl) islands deposited on superconducting Pb(111). For the CO adsorption a comparison with the Pb(110) substrate is demonstrated. We show a general propensity of these adsorbates to diffuse at low temperature under gentle scanning conditions. Our findings provide new insights into high-resolution probe microscopy imaging with terminated tips, decoupling atoms and molecules by NaCl islands or tip-induced lateral manipulation of iron atoms on top of the prototypical Pb(111) superconducting surface.

5.
J Phys Chem C Nanomater Interfaces ; 126(46): 19726-19732, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36466036

RESUMO

Substituting heteroatoms and non-benzenoid carbons into nanographene structure offers a unique opportunity for atomic engineering of electronic properties. Here we show the bottom-up synthesis of graphene nanoribbons (GNRs) with embedded fused BN-doped rubicene components on a Au(111) surface using on-surface chemistry. Structural and electronic properties of the BN-GNRs are characterized by scanning tunneling microscopy (STM) and atomic force microscopy (AFM) with CO-terminated tips supported by numerical calculations. The periodic incorporation of BN heteroatoms in the GNR leads to an increase of the electronic band gap as compared to its undoped counterpart. This opens avenues for the rational design of semiconducting GNRs with optoelectronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA