RESUMO
Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton-1 soil (or $1500m-3 soil or $100m-2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability.
RESUMO
Previous studies of the late Cenozoic erosion rate have yielded different views-long-term stable rates or a significant increase at climate transitions-leading to uncertainty concerning the hypothesized global erosion rate controlled by either tectonic uplift or climatic changes. Here, we present a seven-million-year hornblende mineral record along the Lingtai section of the Chinese Loess Plateau. By examining the spatial distribution of hornblende minerals in seven desert basins, which are potential loess source areas, we constructed a ratio of hornblende versus total heavy minerals to reflect past changes in physical/chemical weathering strength. Our results demonstrate that the ratio has generally increased since 7 Ma, with three significant shifts recorded at 2.6 Ma, 1.4 Ma and 0.5 Ma linked to the onset, continuation and expansion of the Northern Hemisphere glaciation, respectively. Given that chemical weathering during the diagenetic history produces a trend of smoothly increasing hornblende migrating upwards, the three shifts at these boundaries can be interpreted as changes in the bedrock erosion rate on the northern Tibetan Plateau, which may be related to tectonic uplift events and incision of the Yellow River. Evidence presented here supports the idea of coupling between climate change, tectonic uplift and regional erosion.
RESUMO
Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 µm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon.