Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(5): 1044-1057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705337

RESUMO

Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.


Assuntos
Oryza , Oryza/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Grão Comestível
2.
Front Plant Sci ; 13: 1097622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589052

RESUMO

The grain number per panicle (GNP) is an important yield component. Identifying naturally favorable variations in GNP will benefit high-yield rice breeding. Here, we performed a genome-wide association study using a mini-core collection of 266 cultivated rice accessions with deep sequencing data and investigated the phenotype for three years. Three genes, i.e., TOTOU1 (TUT1), Grain height date 7 (Ghd7), and Days to heading 7/Grain height date 7.1/Pseudo-Response Regulator37 (DTH7/Ghd7.1/OsPRR37), which regulate GNP, were found in the quantitative trait loci (QTL) identified in this study. A stable QTL, qGNP1.3, which showed a strong correlation with variations in GNP, was repeatedly detected. After functional and transgenic phenotype analysis, we identified a novel gene, regulator of grain number 1a (RGN1a), which codes for protein kinase, controlling GNP in rice. The RGN1a mutation caused 37.2%, 27.8%, 51.2%, and 25.5% decreases in grain number, primary branch number per panicle, secondary branch number per panicle, and panicle length, respectively. Furthermore, breeding utilization analysis revealed that the additive effects of the dominant allelic variants of RGN1a and DTH7 played a significant role in increasing the grain number per panicle in japonica rice. Our findings enrich the gene pool and provide an effective strategy for the genetic improvement of grain numbers.

3.
Genome Biol ; 23(1): 264, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550554

RESUMO

BACKGROUND: Heterosis is widely used in agriculture. However, its molecular mechanisms are still unclear in plants. Here, we develop, sequence, and record the phenotypes of 418 hybrids from crosses between two testers and 265 rice varieties from a mini-core collection. RESULTS: Phenotypic analysis shows that heterosis is dependent on genetic backgrounds and environments. By genome-wide association study of 418 hybrids and their parents, we find that nonadditive QTLs are the main genetic contributors to heterosis. We show that nonadditive QTLs are more sensitive to the genetic background and environment than additive ones. Further simulations and experimental analysis support a novel mechanism, homo-insufficiency under insufficient background (HoIIB), underlying heterosis. We propose heterosis in most cases is not due to heterozygote advantage but homozygote disadvantage under the insufficient genetic background. CONCLUSION: The HoIIB model elucidates that genetic background insufficiency is the intrinsic mechanism of background dependence, and also the core mechanism of nonadditive effects and heterosis. This model can explain most known hypotheses and phenomena about heterosis, and thus provides a novel theory for hybrid rice breeding in future.


Assuntos
Vigor Híbrido , Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA