RESUMO
The visualization and spatiotemporal monitoring of endogenous esterase activity are crucial for clinical diagnostics and treatment of liver diseases. Our research adopts a novel substrate hydrolysis-enzymatic activity (SHEA) approach using dicyanoisophorone-based fluorogenic ester substrates DCIP-R (R = R1-R6) to evaluate esterase preferences on diverse substrate libraries. Esterase-mediated hydrolysis yielded fluorescent DCIP-OH with a nanomolar detection limit in vitro. These probes effectively monitor ester hydrolysis kinetics with a turnover number of 4.73 s-1 and catalytic efficiency (kcat/Km) of 106 M-1 s-1 (DCIP-R1). Comparative studies utilizing two-photon imaging have indicated that substrates containing alkyl groups (DCIP-R1) as recognition elements exhibit enhanced enzymatic cleavage compared to those containing phenyl substitution on alkyl chains (DCIP-R4). Time-dependent variations in endogenous esterase levels were tracked in healthy and liver tumor models, especially in diethylnitrosamine (DEN)-induced tumors and HepG2-transplanted liver tumors. Overall, fluorescence signal quantifications demonstrated the excellent proficiency of DCIP-R1 in detecting esterase activity both in vitro and in vivo, showing promising potential for biomedical applications.
RESUMO
Clusteroluminescence (CL) materials without largely conjugated structures have gained significant attention due to their unique photophysical properties and potential in bioimaging. However, low luminescence efficiency and short emission wavelength limit their development. This work designs three luminogens with CL properties (CLgens) by introducing n-electron-involved through-space conjugation (TSC) into diarylmethane. Apart from single-photon excited long-wavelength (686â nm) and high-efficiency (29 %) CL, two-photon clusteroluminescence (TPCL) is successfully achieved in such small luminogens with only two isolated heteroatomic units. TSC stabilized in the aggregate state has been proven to realize efficient spatial electron delocalization similar to conventionally conjugated compounds. Encouraged by the excellent TPCL properties, two-photon imaging of blood vessels in vivo and biocompatibility verification utilizing CLgens are also achieved. This work illustrates the essential role of TSC in promoting nonlinear optical properties of CLgens and may facilitate further design and development of the next generation of bioprobes with excellent biocompatibility.
RESUMO
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.
Assuntos
Gotículas Lipídicas , Macrófagos , Tecido Adiposo , Animais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , FenótipoRESUMO
The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.
Assuntos
Nanopartículas , Fotoquimioterapia , Corantes , Polímeros , ÁguaRESUMO
Targeting B7-H3 chimeric antigen receptor (CAR) T cells has antitumor potential for therapy of non-small cell lung cancer (NSCLC) in preclinical studies. However, CAR T cell therapy remains a formidable challenge for the treatment of solid tumors due to the heterogeneous and immunosuppressive tumor microenvironment (TME). Nanozymes exhibit merits modulating the immunosuppression of the tumor milieu. Here, a synergetic strategy by combination of nanozymes and CAR T cells in solid tumors is described. This nanozyme with dual photothermal-nanocatalytic properties is endowed to remodel TME by destroying its compact structure. It is found that the B7-H3 CAR T cells infused in mice engrafted with the NSCLC cells have superior antitumor activity after nanozyme ablation of the tumor. Importantly, it is found that the changes altered immune-hostile cancer environment, resulting in enhanced activation and infiltration of B7-H3 CAR T cells. The first evidence that the process of combination nanozyme therapy effectively improves the therapeutic index of CAR T cells is presented. Thus, this study clearly supports that the TME-immunomodulated nanozyme is a promising tool to improve the therapeutic obstacles of CAR T cells against solid tumors.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Animais , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Imunoterapia Adotiva , Camundongos , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Emerging advances in iron oxide nanoparticles exploit their high magnetization for various applications, such as bioseparation, hyperthermia, and magnetic resonance imaging. In contrast to their excellent magnetic performance, the harmonic generation and luminescence properties of iron oxide nanoparticles have not been thoroughly explored, thus limiting their development as a tool in photomedicine. In this work, a seed/growth-inspired synthesis is developed combined with primary mineralization and a ligand-assisted secondary growth strategy to prepare mesostructured α-FeOOH nanorods (NRs). The sub-wavelength heterogeneity of the refractive index leads to enhanced third-harmonic generation (THG) signals under near-infrared excited wavelengths at 1230 nm. The as-prepared NRs exhibit an 11-fold stronger THG intensity compared to bare α-FeOOH NRs. Using these unique nonlinear optical properties, it is demonstrated that mesostructured α-FeOOH NRs can serve as biocompatible and nonbleaching contrast agents in THG microscopy for long-term labeling of cells as well as in angiography in vivo by modifying lectin to enhance the binding efficiency to the glycocalyx layers on the wall of blood vessels. These results provide a new insight into Fe-based nanoplatforms capable of emitting coherent light as molecular probes in optical microscopy, thus establishing a complementary microscopic imaging method for macroscopic magnetic imaging systems.
Assuntos
Imageamento Tridimensional , Compostos de Ferro/química , Minerais/química , Nanotubos/química , Células A549 , Animais , Sobrevivência Celular , Orelha/anatomia & histologia , Humanos , Camundongos Endogâmicos BALB C , Nanotubos/ultraestrutura , Dinâmica não LinearRESUMO
PURPOSE: Oral mucositis is a common side effect of radiochemotherapy and may adversely affect the patients' quality of life (QoL). Honey application may reduce the mucositis grade in patients. Here, we conducted a meta-analysis of randomized controlled trials (RCTs) to evaluate the prophylactic and therapeutic effects of honey on radiochemotherapy-induced oral mucositis. METHODS: Publications on RCTs were extracted from the PubMed, Embase, CINAHL, and Cochrane Library databases. The primary outcomes were mucositis grades and pain scores. Secondary outcomes were the recovery time and QoL. The study was registered with PROSPERO (number CRD42018108486). RESULTS: Nineteen RCTs, involving 1276 patients, were reviewed. Honey considerably mitigated oral mucositis in both prophylactic and therapeutic phases. In the prophylactic phase, intolerable mucositis development was significantly prevented in the honey-treated group (RR = 0.18, 95% confidence interval [CI] = 0.09 to 0.41). Patients treated with honey showed significant decrease in pain scores in the first month of treatment (weighted mean difference [WMD] = - 3.25, 95% CI = - 4.41 to - 2.09) and at the end of the treatment (WMD = - 2.32, 95% CI = - 4.47 to - 0.18). CONCLUSION: Honey, which is relatively cheap and easily available, prevented mucositis and effectively mitigate mucositis in patients after radiochemotherapy. Moreover, it significantly reduced the mucositis grade and engendered a fast and painless healing process. Therefore, honey use during and after radiochemotherapy is recommended for mucositis prevention and treatment.
Assuntos
Quimiorradioterapia/efeitos adversos , Mel/análise , Mucosite/tratamento farmacológico , Estomatite/induzido quimicamente , Humanos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei.
Assuntos
Cloreto de Mercúrio/toxicidade , Paracentrotus/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Animais , Apoptose , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Marcação In Situ das Extremidades Cortadas , Paracentrotus/metabolismo , Ouriços-do-Mar/metabolismoRESUMO
On the basis of an infrared femtosecond Cr:forsterite laser, we developed a semiquantitative method to analyze the microscopic distribution of bilirubins. Using 1230 nm femtosecond pulses, we selectively excited the two-photon red fluorescence of bilirubin dimers around 660 nm. Autofluorescences from other endogenous fluorophores were greatly suppressed. Using this distinct fluorescence measure, we found that poorly differentiated hepatocellular carcinoma (HCC) tissues on average showed 3.7 times lower concentration of bilirubins than the corresponding nontumor parts. The corresponding fluorescence lifetime measurements indicated that HCC tissues exhibited a longer lifetime (500 ps) than that of nontumor parts (300 ps). Similarly, oral cancer cell lines had longer lifetimes (>330 ps) than those of nontumor ones (250 ps). We anticipate the developed methods of bilirubin molecular imaging to be useful in diagnosing cancers or studying the dynamics of bilirubin metabolisms in live cells.
Assuntos
Bilirrubina/análise , Bilirrubina/metabolismo , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular Tumoral , Dimerização , Humanos , Fígado/química , Fígado/patologia , Neoplasias Hepáticas/química , Microscopia de Fluorescência por Excitação Multifotônica , Técnicas de Diagnóstico Molecular , Neoplasias Bucais/diagnósticoRESUMO
BACKGROUND: Grana and starch are major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two-photon fluorescence (2PF) and second harmonic generation (SHG) signals. SHG is sensitive to crystallized structures while 2PF selectively reveals the distribution of chlorophyll. RESULT: Three distinct microstructures with different contrasts were observed, i.e. "SHG dominates", "2PF dominates", and "SHG collocated with 2PF". It is known that starch and grana both emit SHG due to their highly crystallized structures, and no autofluorescence is emitted from starch, so the "SHG dominates" contrast should correspond to starch. The contrast of "SHG collocated with 2PF" is assigned to be grana, which exhibit crystallized structure with autofluorescent chlorophyll. The "2PF dominates" contrast should correspond to stroma thylakoid, which is a non-packed membrane structure with chrolophyll. The contrast assignment is further supported by fluorescence lifetime measurement. CONCLUSION: We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. By merging the 2PF and SHG images, grana, starch and stroma thylakoid can be visually distinguished. This approach can be extended to the observation of 3D grana distribution and their dynamics in living plants.
Assuntos
Clorofila/análise , Microscopia de Fluorescência por Excitação Multifotônica , Folhas de Planta/anatomia & histologia , Amido/análise , Tilacoides/ultraestrutura , Gleiquênias/anatomia & histologia , FotossínteseRESUMO
Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-ß (IFNß) by MSCs. IFNß reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.
Assuntos
Interferon beta , Células Matadoras Naturais , Células-Tronco Mesenquimais , Células Neoplásicas Circulantes , Nucleotidiltransferases , Transdução de Sinais , Microambiente Tumoral , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Células Matadoras Naturais/imunologia , Camundongos , Interferon beta/metabolismo , Interferon beta/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Células Neoplásicas Circulantes/imunologia , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral/imunologia , Proteínas de Membrana/metabolismo , Modelos Animais de Doenças , Linhagem Celular TumoralRESUMO
OBJECTIVES: This study aimed to establish the exposure-lag-response effect between daily maximum temperature and stroke-related emergency department visits and to project heat-induced stroke impacts under global warming levels (GWL) of 2 °C and 4 °C. METHODS: Stroke-related emergency department visits in Taiwan from 2001 to 2020 were identified using the National Health Insurance Research Database (NHIRD). The study population consisted of 1,100,074 initial stroke cases matched with 2,200,148 non-stroke controls. We employed Distributed Lag Nonlinear Models (DLNM) in a case-crossover study to investigate the association between temperature and stroke. Generalized Estimating Equations (GEE) models with a Poisson function were used to correlate high-temperature exposure with annual stroke incidence rates. Projections were made under two global warming scenarios, GWL 2.0 °C and 4.0 °C, using Coupled General Circulation Model (GCMs). Baseline data from 1995 to 2014 were transformed for spatial distribution at the township level. Geographic Information System (GIS) spatial analysis was performed using Quantum GIS 3.2.0 software. RESULTS: DLNM exposure-lag-response effect revealed that daily maximum temperature exceeding 34 °C significantly increased the risk of stroke-related emergency department visits, particularly for ischemic stroke. Under the 2 °C GWL scenario, the frequency of days with temperatures surpassing 34 °C is projected to rise substantially by the median year of 2042, with a further increase to 92.6 ± 18.0 days/year by 2065 under the 4 °C GWL scenario. Ischemic stroke showed the highest increase in temperature-related incidence rates, notably rising from 7.80% under the GWL 2 °C to 36.06% under the GWL 4 °C. Specifically, the annual temperature-related incidence rate for ischemic stroke is expected to increase significantly by 2065. Regions such as Taichung, Hsinchu, Yilan, and Taitung demonstrated pronounced changes in heat-related ischemic stroke incidence under the GWL 4 °C. CONCLUSIONS: The findings emphasize the importance of addressing temperature-related stroke risks, particularly in regions projected to experience significant temperature increases. Effective mitigation strategies are crucial to reduce the impact of rising temperatures on stroke incidence and safeguard public health.
Assuntos
Aquecimento Global , Acidente Vascular Cerebral , Humanos , Taiwan/epidemiologia , Incidência , Aquecimento Global/estatística & dados numéricos , Acidente Vascular Cerebral/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Cross-Over , Serviço Hospitalar de Emergência/estatística & dados numéricos , Mudança Climática , Temperatura Alta/efeitos adversos , Previsões/métodos , AdultoRESUMO
Egg white (EW)-derived hydrogels hold promise as biomaterials for in vitro cell culture due to their ability to mimic the extracellular matrix. However, their highly cross-linked structures restrict their potential for in vivo applications, as they are unable to integrate dynamically with tissues before degradation. In this study, this limitation is addressed by introducing carbon dots (CDs) as cross-linking agents for EW in a dilute aqueous solution. The resulting CDs-crosslinked EW hydrogel (CEWH) exhibits tensile strength comparable to that of skin tissue and features a large pore structure that promotes cell infiltration. Subcutaneous implantation of CEWH demonstrated excellent integration with surrounding tissue and a degradation rate aligned with the hair follicles (HFs) regeneration cycle. This allows the long-term regeneration and establishment of an M2 macrophage-dominated immune microenvironment, which in turn promotes the re-entry of HFs into the anagen phase from the telogen phase. Additionally, CEWH demonstrated potential as a wound dressing material. Overall, this study paves the way for utilizing EW as a versatile biomaterial for tissue engineering.
RESUMO
Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.
RESUMO
Functional human insulin-Au nanodots (NDs) are synthesized for the in vivo imaging of insulin metabolism. Benefiting from its efficient red to near infrared fluorescence, deep tissue subcellular uptake of insulin-Au NDs can be clearly resolved through a least-invasive harmonic generation and two-photon fluorescence (TPF) microscope. In vivo investigations on mice ear and ex vivo assays on human fat tissues conclude that cells with rich insulin receptors have higher uptake of administrated insulin. Interestingly, the insulin-Au NDs can even permeate into lipid droplets (LDs) of adipocytes. Using this newly discovered metabolic phenomenon of insulin, it is found that enlarged adipocytes in type II diabetes mice have higher adjacent/LD concentration contrast with small-sized ones in wild type mice. For human clinical samples, the epicardial adipocytes of patients with diabetes and coronary artery disease (CAD) also show elevated adjacent/LD concentration contrast. As a result, human insulin-Au nanodots provide a new approach to explore subcellular insulin metabolism in model animals or patients with metabolic or cardiovascular diseases.
Assuntos
Ouro/química , Insulina/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Humanos , Nanomedicina/métodosRESUMO
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
RESUMO
Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.
RESUMO
Conventional techniques for in vitro cancer drug screening require labor-intensive formalin fixation, paraffin embedding, and dye staining of tumor tissues at fixed endpoints. This way of assessment discards the valuable pharmacodynamic information in live cells over time. Here, we found endogenous lipofuscin-like autofluorescence acutely accumulated in the cell death process. Its unique red autofluorescence could report the apoptosis without labeling and continuously monitor the treatment responses in 3D tumor-culture models. Lifetime imaging of lipofuscin-like red autofluorescence could further distinguish necrosis from apoptosis of cells. Moreover, this endogenous fluorescent marker could visualize the apoptosis in live zebrafish embryos during development. Overall, this study validates that lipofuscin-like autofluorophore is a generic cell death marker. Its characteristic autofluorescence could label-free predict the efficacy of anti-cancer drugs in organoids or animal models.
Assuntos
Lipofuscina , Neoplasias , Animais , Lipofuscina/metabolismo , Peixe-Zebra/metabolismo , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Coloração e RotulagemRESUMO
Rationale: Prediabetes can be reversed through lifestyle intervention, but its main pathologic hallmark, insulin resistance (IR), cannot be detected as conveniently as blood glucose testing. In consequence, the diagnosis of prediabetes is often delayed until patients have hyperglycemia. Therefore, developing a less invasive diagnostic method for rapid IR evaluation will contribute to the prognosis of prediabetes. Adipose tissue is an endocrine organ that plays a crucial role in the development and progression of prediabetes. Label-free visualizing the prediabetic microenvironment of adipose tissues provides a less invasive alternative for the characterization of IR and inflammatory pathology. Methods: Here, we successfully identified the differentiable features of prediabetic adipose tissues by employing the metabolic imaging of three endogenous fluorophores NAD(P)H, FAD, and lipofuscin-like pigments. Results: We discovered that 1040-nm excited lipofuscin-like autofluorescence could mark the location of macrophages. This unique feature helps separate the metabolic fluorescence signals of macrophages from those of adipocytes. In prediabetes fat tissues with IR, we found only adipocytes exhibited a low redox ratio of metabolic fluorescence and high free NAD(P)H fraction a1. This differential signature disappears for mice who quit the high-fat diet or high-fat-high-sucrose diet and recover from IR. When mice have diabetic hyperglycemia and inflamed fat tissues, both adipocytes and macrophages possess this kind of metabolic change. As confirmed with RNA-seq analysis and histopathology evidence, the change in adipocyte's metabolic fluorescence could be an indicator or risk factor of prediabetic IR. Conclusion: Our study provides an innovative approach to diagnosing prediabetes, which sheds light on the strategy for diabetes prevention.
Assuntos
Hiperglicemia , Resistência à Insulina , Estado Pré-Diabético , Camundongos , Animais , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/metabolismo , Lipofuscina/metabolismo , NAD/metabolismo , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Hiperglicemia/metabolismoRESUMO
Esophageal squamous cell carcinoma (ESCC) features atypical clinical manifestations and a low 5-year survival rate (< 5% in many developing countries where most of the disease occurs). Precise ESCC detection and grading toward timely and effective intervention are therefore crucial. In this study, we propose a multidimensional, slicing-free, and label-free histopathological evaluation method based on multispectral multiphoton fluorescence lifetime imaging microscopy (MM-FLIM) for precise ESCC identification. To assess the feasibility of this method, comparative imaging on fresh human biopsy specimens of different ESCC grades is performed. By constructing fluorescence spectrum- and lifetime-coded images, ESCC-induced morphological variations are unveiled. Further quantification of cell metabolism and stromal fibers reveals potential indicators for ESCC detection and grading. The specific identification of keratin pearls provides additional support for the early detection of ESCC. These findings demonstrate the viability of using MM-FLIM and the series of derived indicators for histopathological evaluation of ESCC. As there is an increasing interest in developing multiphoton endoscopes and multiphoton FLIM systems for clinical use, the proposed method would probably allow noninvasive, label-free, and multidimensional histological detection and grading of ESCC in the future.