Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Cell Physiol ; 64(5): 519-535, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943363

RESUMO

Autophagy in plants is regulated by diverse signaling cascades in response to environmental changes. Fine-tuning of its activity is critical for the maintenance of cellular homeostasis under basal and stressed conditions. In this study, we compared the Arabidopsis autophagy-related (ATG) system transcriptionally under inorganic phosphate (Pi) deficiency versus nitrogen deficiency and showed that most ATG genes are only moderately upregulated by Pi starvation, with relatively stronger induction of AtATG8f and AtATG8h among the AtATG8 family. We found that Pi shortage increased the formation of GFP-ATG8f-labeled autophagic structures and the autophagic flux in the differential zone of the Arabidopsis root. However, the proteolytic cleavage of GFP-ATG8f and the vacuolar degradation of endogenous ATG8 proteins indicated that Pi limitation does not drastically alter the autophagic flux in the whole roots, implying a cell type-dependent regulation of autophagic activities. At the organismal level, the Arabidopsis atg mutants exhibited decreased shoot Pi concentrations and smaller meristem sizes under Pi sufficiency. Under Pi limitation, these mutants showed enhanced Pi uptake and impaired root cell division and expansion. Despite a reduced steady-state level of several PHOSPHATE TRANSPORTER 1s (PHT1s) in the atg root, cycloheximide treatment analysis suggested that the protein stability of PHT1;1/2/3 is comparable in the Pi-replete wild type and atg5-1. By contrast, the degradation of PHT1;1/2/3 is enhanced in the Pi-deplete atg5-1. Our findings reveal that both basal autophagy and Pi starvation-induced autophagy are required for the maintenance of Pi homeostasis and may modulate the expression of PHT1s through different mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fosfatos/metabolismo , Homeostase , Autofagia/fisiologia , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 94(3): 426-438, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29451720

RESUMO

Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the ß-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Inteínas , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Fluorescência , Proteínas de Fusão de Membrana/metabolismo , Folhas de Planta/metabolismo , Mapeamento de Interação de Proteínas/métodos , Nicotiana/metabolismo
3.
J Membr Biol ; 252(2-3): 183-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053903

RESUMO

Auxin regulates diverse processes involved in plant growth and development. AUX1 is the first identified and most widely investigated auxin importer, and plays an important role in root gravitropism and the development of lateral root and root hair. However, the regulation of auxin transport by AUX1 is still not well understood. In this study, we examined the effect of metal ions on AUX1 transport function and found that the activity could be specifically stimulated four times by K+. Further experiments revealed the preference of KF on the enhancement of transport activity of AUX1 over KCl, KBr, and KI. In addition, the interaction between K+ and AUX1 confers AUX1 more resistant to thermal stress but more vulnerable to proteolysis. Conventional chemical modification indicated that the extracellular acidic amino acids of AUX1 play a key role in the K+ stimulation. Site-specific mutagenesis showed that the replacement of Asp166, Asp293, and Asp312 of AUX1 to alanine deteriorated the K+-stimulated auxin transport. By contrast, when these residues were mutated to glutamate, lysine, or asparagine, only the D312E variant restored the IAA transport activity to the wild-type level. It is thus convinced that D312 is presumably the most promising residue for the K+ stimulation on AUX1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Brometos/farmacologia , Fluoretos/farmacologia , Ácidos Indolacéticos/metabolismo , Cloreto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Iodeto de Potássio/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Brometos/química , Fluoretos/química , Expressão Gênica , Temperatura Alta , Ácidos Indolacéticos/farmacologia , Mutagênese Sítio-Dirigida , Cloreto de Potássio/química , Compostos de Potássio/química , Iodeto de Potássio/química , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais
4.
J Membr Biol ; 251(2): 263-276, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453559

RESUMO

Plant vacuolar H+-transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Proteínas 14-3-3/genética , Proteínas de Arabidopsis/genética , Temperatura Alta , Pirofosfatase Inorgânica/genética , Sódio/metabolismo
5.
Plant Cell ; 25(10): 4044-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24122829

RESUMO

MicroRNA399-mediated regulation of the ubiquitin-conjugating enzyme UBC24/phosphate2 (PHO2) is crucial for Pi acquisition and translocation in plants. Because of a potential role for PHO2 in protein degradation and its association with membranes, an iTRAQ (for isobaric tags for relative and absolute quantitation)- based quantitative membrane proteomic method was employed to search for components downstream of PHO2. A total of 7491 proteins were identified from Arabidopsis thaliana roots by mass spectrometry, 35.2% of which were predicted to contain at least one transmembrane helix. Among the quantifiable proteins, five were significantly differentially expressed between the wild type and pho2 mutant under two growth conditions. Using immunoblot analysis, we validated the upregulation of several members in phosphate transporter1 (PHT1) family and phosphate transporter traffic facilitator1 (PHF1) in pho2 and demonstrated that PHO2 mediates the degradation of PHT1 proteins. Genetic evidence that loss of PHF1 or PHT1;1 alleviated Pi toxicity in pho2 further suggests that they play roles as downstream components of PHO2. Moreover, we showed that PHO2 interacts with PHT1s in the postendoplasmic reticulum compartments and mediates the ubiquitination of endomembrane-localized PHT1;1. This study not only uncovers a mechanism by which PHO2 modulates Pi acquisition by regulating the abundance of PHT1s in the secretory pathway destined for plasma membranes, but also provides a database of the membrane proteome that will be widely applicable in root biology research.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/enzimologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/enzimologia , Fosfatos/metabolismo , Mapeamento de Interação de Proteínas , Proteólise , Proteoma/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
6.
Plant Cell ; 24(5): 2168-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22634761

RESUMO

The Arabidopsis thaliana pho2 mutant, which is defective in a ubiquitin-conjugating E2 enzyme, displays inorganic phosphate (Pi) toxicity as a result of enhanced uptake and root-to-shoot translocation of Pi. To elucidate downstream components of the PHO2-dependent regulatory pathway, we identified two pho2 suppressors as carrying missense mutations in PHO1, which has been implicated in Pi loading to the xylem. In support of the genetic interaction between PHO1 and PHO2, we found that the protein level of PHO1 is increased in pho2, whereas such accumulation is ameliorated in both pho2 suppressors. Results from cycloheximide and endosomal Cys protease inhibitor E-64d treatments further suggest that PHO1 degradation is PHO2 dependent and involves multivesicular body-mediated vacuolar proteolysis. Using the transient expression system of tobacco (Nicotiana tabacum) leaves, we demonstrated that PHO1 and PHO2 are partially colocalized and physically interact in the endomembranes, where the ubiquitin conjugase activity of PHO2 is required for PHO1 degradation. In addition, reduced PHO1 expression caused by PHO1 mutations impede Pi uptake, indicating a functional association between xylem loading and acquisition of Pi. Together, our findings uncover a pivotal molecular mechanism by which PHO2 modulates the degradation of PHO1 in the endomembranes to maintain Pi homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Homeostase/genética , Homeostase/fisiologia , Mutação de Sentido Incorreto/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Enzimas de Conjugação de Ubiquitina/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-36674403

RESUMO

Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on cleaning. Our study aimed to identify which plastic material is suitable for the coverage of elevator buttons and the optimal intervals for their cleaning. We tested six plastic covers, including polyethylene (PE), polymethylpentene (PMP), polyvinyl chloride (PVD), and polyvinylidene chloride (PVDC) plastic wraps; a thermoplastic polyurethane (TPU) keyboard cover; and a polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) laminating film, which are plastic films. The bioburden on the elevator buttons at different time intervals was measured using an adenosine triphosphate (ATP) bioluminescence assay. Our results show that wraps made of PVDC had superior durability compared with those of PMP, PVC, and PVDC, in addition to the lowest detectable ATP levels among the six tested materials. Regarding different button locations, the highest ATP values were found in door-close buttons followed by door-open, and first-floor buttons after one- and three-hour intervals (p = 0.024 and p < 0.001, respectively). After routine disinfection, the ATP levels of buttons rapidly increased after touching and became more prominent after three hours (p < 0.05). Our results indicate that PVDC plastic wraps have adequate durability and the lowest residual bioburden when applied as covers for elevator buttons. Door-close and -open buttons were the most frequently touched sites, requiring more accurate and precise disinfection; therefore, cleaning intervals of no longer than three hours may be warranted.


Assuntos
Desinfecção , Elevadores e Escadas Rolantes , Polietileno , Trifosfato de Adenosina
8.
Front Plant Sci ; 14: 1018984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434600

RESUMO

Nutrient starvation-induced autophagy is a conserved process in eukaryotes. Plants defective in autophagy show hypersensitivity to carbon and nitrogen limitation. However, the role of autophagy in plant phosphate (Pi) starvation response is relatively less explored. Among the core autophagy-related (ATG) genes, ATG8 encodes a ubiquitin-like protein involved in autophagosome formation and selective cargo recruitment. The Arabidopsis thaliana ATG8 genes, AtATG8f and AtATG8h, are notably induced in roots under low Pi. In this study, we show that such upregulation correlates with their promoter activities and can be suppressed in the phosphate response 1 (phr1) mutant. Yeast one-hybrid analysis failed to attest the binding of the AtPHR1 transcription factor to the promoter regions of AtATG8f and AtATG8h. Dual luciferase reporter assays in Arabidopsis mesophyll protoplasts also indicated that AtPHR1 could not transactivate the expression of both genes. Loss of AtATG8f and AtATG8h leads to decreased root microsomal-enriched ATG8 but increased ATG8 lipidation. Moreover, atg8f/atg8h mutants exhibit reduced autophagic flux estimated by the vacuolar degradation of ATG8 in the Pi-limited root but maintain normal cellular Pi homeostasis with reduced number of lateral roots. While the expression patterns of AtATG8f and AtATG8h overlap in the root stele, AtATG8f is more strongly expressed in the root apex and root hair and remarkably at sites where lateral root primordia develop. We hypothesize that Pi starvation-induction of AtATG8f and AtATG8h may not directly contribute to Pi recycling but rely on a second wave of transcriptional activation triggered by PHR1 that fine-tunes cell type-specific autophagic activity.

9.
Plant Physiol ; 156(3): 1176-89, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21546457

RESUMO

Calcium ions (Ca(2+)) and Ca(2+)-related proteins mediate a wide array of downstream processes involved in plant responses to abiotic stresses. In Arabidopsis (Arabidopsis thaliana), disruption of the vacuolar Ca(2+)/H(+) transporters CAX1 and CAX3 causes notable alterations in the shoot ionome, including phosphate (P(i)) content. In this study, we showed that the cax1/cax3 double mutant displays an elevated P(i) level in shoots as a result of increased P(i) uptake in a miR399/PHO2-independent signaling pathway. Microarray analysis of the cax1/cax3 mutant suggests the regulatory function of CAX1 and CAX3 in suppressing the expression of a subset of shoot P(i) starvation-responsive genes, including genes encoding the PHT1;4 P(i) transporter and two SPX domain-containing proteins, SPX1 and SPX3. Moreover, although the expression of several PHT1 genes and PHT1;1/2/3 proteins is not up-regulated in the root of cax1/cax3, results from reciprocal grafting experiments indicate that the cax1/cax3 scion is responsible for high P(i) accumulation in grafted plants and that the pht1;1 rootstock is sufficient to moderately repress such P(i) accumulation. Based on these findings, we propose that CAX1 and CAX3 mediate a shoot-derived signal that modulates the activity of the root P(i) transporter system, likely in part via posttranslational regulation of PHT1;1 P(i) transporters.


Assuntos
Antiporters/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Vacúolos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Cálcio/farmacologia , Genes de Plantas/genética , Homeostase/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Fosfatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Supressão Genética/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
10.
Methods Mol Biol ; 2200: 323-336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33175385

RESUMO

The study of protein-protein interaction (PPI) is critical for understanding cellular processes within biological systems. The conventional biomolecular fluorescence complementation (BiFC) or bipartite split-fluorescent protein (FP) is a noninvasive fluorescent-based technique that enables direct visualization of PPI in living cells once the two nonfluorescent fragments are brought into close vicinity. However, BiFC can potentially lead to a high background noise arising from an inherent feature of the irreversible self-assembly of the nonfluorescent fragments. Recently, the newly developed tripartite split-sfGFP method was demonstrated to detect membrane PPIs in plant cells without spurious background signals even when fusion proteins are highly expressed and accessible to the compartments of interaction. Here we describe a protocol for using the ß-Estradiol-inducible tripartite split-sfGFP assay for side-by-side analyses of in vivo PPI along with in situ subcellular localization of fusion proteins in agroinfiltrated Nicotiana benthamiana leaves.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Nicotiana/genética
11.
Traffic ; 9(10): 1618-28, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694437

RESUMO

How individual protein subunits assemble into the higher order structure of a protein complex is not well understood. Four proteins dedicated to the assembly of the V(0) subcomplex of the V-adenosine triphosphatase (V-ATPase) in the endoplasmic reticulum (ER) have been identified in yeast, but their precise mode of molecular action remains to be identified. In contrast to the highly conserved subunits of the V-ATPase, orthologs of the yeast assembly factors are not easily identified based on sequence similarity. We show in this study that two ER-localized Arabidopsis proteins that share only 25% sequence identity with Vma21p can functionally replace this yeast assembly factor. Loss of AtVMA21a function in RNA interference seedlings caused impaired cell expansion and changes in Golgi morphology characteristic for plants with reduced V-ATPase activity, and we therefore conclude that AtVMA21a is the first V-ATPase assembly factor identified in a multicellular eukaryote. Moreover, VMA21p acts as a dedicated ER escort chaperone, a class of substrate-specific accessory proteins so far not identified in higher plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Chaperoninas/biossíntese , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Plasmídeos , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/genética
12.
Nat Commun ; 7: 11095, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029856

RESUMO

Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as PHOSPHATE TRANSPORTER 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters. Based on (31)P-magnetic resonance spectroscopy analysis, Arabidopsis pht5;1 loss-of-function mutants accumulate less Pi and exhibit a lower vacuolar-to-cytoplasmic Pi ratio than controls. Conversely, overexpression of PHT5 leads to massive Pi sequestration into vacuoles and altered regulation of Pi starvation-responsive genes. Furthermore, we show that heterologous expression of the rice homologue OsSPX-MFS1 mediates Pi influx to yeast vacuoles. Our findings show that a group of Pi transporters in vacuolar membranes regulate cytoplasmic Pi homeostasis and are required for fitness and plant growth.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/fisiologia , Fosfatos/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Homeostase , Espectroscopia de Ressonância Magnética , Oryza/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
14.
Trends Plant Sci ; 19(10): 647-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25001521

RESUMO

Phosphate (Pi), which is indispensable for the structural and metabolic needs of plants, is acquired and translocated by Pi transporters. Deciphering the regulatory network of Pi signaling and homeostasis that involves the control of Pi transporters trafficking to, and their activity at, the plasma membrane provides insight into how plants adapt to environmental changes in Pi availability. Here, we review recent studies that revealed the involvement of microRNA399-PHOSPHATE 2 (PHO2) and microR827-NITROGEN LIMITATION ADAPTATION (NLA) modules in mediating the ubiquitination and degradation of PHOSPHATE TRANSPORTER 1 (PHT1) and/or PHOSPHATE 1 (PHO1). These discoveries show that miRNAs are an effective way for plants to monitor the turnover of Pi transporters in the membrane system by modulating the functioning of the membrane-associated ubiquitin machinery.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Plantas/genética , Adaptação Fisiológica , Transporte Biológico , Membrana Celular/metabolismo , Homeostase , Modelos Biológicos , Fenótipo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , RNA de Plantas/genética , Transdução de Sinais
15.
Eur J Cell Biol ; 89(2-3): 152-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19945769

RESUMO

Acidification of endomembrane compartments by the vacuolar H(+)-ATPase (V-ATPase) is an important mechanism to generate microenvironments suitable for various cellular functions. Differential assembly of subunit isoforms provides the potential to flexibly adapt the proton-pumping V-ATPase complex to changing physiological conditions and cell type-specific requirements. In Arabidopsis, the regulatory V-ATPase subunit E (VHA-E) is encoded by three genes with distinct expression patterns. We show here that VHA-E2, which belongs to a clade of pollen-specific VHA-E isoforms present in all higher plants, has a specialized but non-essential function during gametophyte development. Similarly, loss of the epidermis-specific isoform VHA-E3, which we show here to be transcriptionally regulated by the phytohormone jasmonic acid, does not cause obvious phenotypic changes. Furthermore, when expressed ubiquitously, VHA-E3, in contrast to VHA-E2, is able to complement loss of the essential subunit VHA-E1 indicating different degrees of functional specialization among the Arabidopsis VHA-E isoforms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Isoenzimas/metabolismo , Subunidades Proteicas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Isoenzimas/classificação , Isoenzimas/genética , Análise em Microsséries , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/classificação , ATPases Vacuolares Próton-Translocadoras/genética
16.
Curr Opin Plant Biol ; 12(3): 312-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19481493

RESUMO

In response to varying nutrient availability in soil, plants display a high degree of physiological and developmental plasticity that relies on both local and systemic signaling pathways to coordinate the expression of genes involved in adaptive responses. The integration of these responses at the whole-plant level requires long-distance signaling mechanisms communicating the information between the two indispensable organs, the shoot and the root, which respectively provide photosynthates and mineral nutrients. Although such long-distance signaling is not well understood at the molecular level, several molecules, including hormones, sugars, and nutrients themselves or their metabolites, have been suggested to function as the systemic signals. Moreover, recent discoveries of the phloem-mobile microRNA399s as key components mediating the plant responses to phosphorus stress reveal a novel biological role of small RNA in the long-distance signaling of nutrient status.


Assuntos
Minerais/metabolismo , Plantas/metabolismo , Transdução de Sinais/fisiologia , MicroRNAs/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética
17.
Plant Cell ; 20(4): 1088-100, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18441211

RESUMO

Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H(+)-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Complexo de Golgi/enzimologia , Hipocótilo/crescimento & desenvolvimento , Oxilipinas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Celulose/biossíntese , Etilenos/metabolismo , Perfilação da Expressão Gênica , Hipocótilo/enzimologia , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA