Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 12(16): 9660-9670, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424931

RESUMO

A breakthrough in enhancing visible-light photocatalysis of wide-bandgap semiconductors such as prototypical titania (TiO2) via cocatalyst decoration is still challenged by insufficient heterojunctions and inevitable interfacial transport issues. Herein, we report a novel TiO2-based composite material composed of in situ generated polymorphic nanodomains including carbon nitride (C3N4) and (001)/(101)-faceted anatase nanocrystals. The introduction of ultrafine C3N4 results in the generation of many oxygen vacancies in the TiO2 lattice, and simultaneously induces the exposure and growth of anatase TiO2(001) facets with high surface energy. The photocatalytic performance of C3N4-induced TiO2 for degradation of 2,4-dichlorophenol under visible-light irradiation was tested, its apparent rate being up to 1.49 × 10-2 min-1, almost 3.8 times as high as that for the pure TiO2 nanofibers. More significantly, even under low operation temperature and after a long-term photocatalytic process, the composite still exhibits exceptional degradation efficiency and stability. The normalized degradation efficiency and effective lifespan of the composite photocatalyst are far superior to other reported modified photocatalysts.

2.
J Am Chem Soc ; 133(50): 20112-5, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22084827

RESUMO

A significant enhancement of thermoelectric performance in layered oxyselenides BiCuSeO was achieved. The electrical conductivity and Seebeck coefficient of BiCu(1-x)SeO (x = 0-0.1) indicate that the carriers were introduced in the (Cu(2)Se(2))(2-) layer by Cu deficiencies. The maximum of electrical conductivity is 3 × 10(3) S m(-1) for Bicu(0.975)Seo at 650 °C, much larger than 470 S m(-1) for pristine BiCuSeO. Featured with very low thermal conductivity (∼0.5 W m(-1) K(-1)) and a large Seebeck coefficient (+273 µV K(-1)), ZT at 650 °C is significantly increased from 0.50 for pristine BiCuSeO to 0.81 for BiCu(0.975)SeO by introducing Cu deficiencies, which makes it a promising candidate for medium temperature thermoelectric applications.

3.
Sci Rep ; 6: 24620, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095046

RESUMO

Photocatalysis is attracting enormous interest driven by the great promise of addressing current energy and environmental crises by converting solar light directly into chemical energy. However, efficiently harvesting solar energy for photocatalysis remains a pressing challenge, and the charge kinetics and mechanism of the photocatalytic process is far from being well understood. Here we report a new full solar spectrum driven photocatalyst in the system of a layered oxyselenide BiCuSeO with good photocatalytic activity for degradation of organic pollutants and chemical stability under light irradiation, and the photocatalytic performance of BiCuSeO can be further improved by band gap engineering with introduction of La. Our measurements and density-functional-theory calculations reveal that the effective mass and mobility of the carriers in BiCuSeO can be tuned by the La-doping, which are responsible for the tunable photocatalytic activity. Our findings may offer new perspectives for understanding the mechanism of photocatalysis through modulating the charge mobility and the effective mass of carriers and provide a guidance for designing efficient photocatalyts.

4.
Sci Rep ; 5: 7783, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25586762

RESUMO

The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing (nano-grains and nano-inclusions) and point defect engineering. The introduction of point defects in In2O3 results in a glass-like thermal conductivity. The lattice thermal conductivity could be reduced by 60%, and extraordinary low lattice thermal conductivity (1.2 W m(-1) K(-1) @ 973 K) below the amorphous limit was achieved. Our work paves a path for enhancing the ZT in oxides by both the nanosturcturing and the point defect engineering for better phonon-glasses and electron-crystal (PGEC) materials.

5.
Adv Mater ; 25(36): 5086-90, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23897654

RESUMO

A high-performance thermoelectric oxyselenide BiCuSeO ceramic with ZT > 1.1 at 823 K and higher average ZT value (ZTave ≈0.8) is obtained. The heavy doping element and nanostructures can effectively tune its electronic structure, hole concentration, and thermal conductivity, resulting in substantially enhanced mobility, power factor, and thus ZT value. This work provides a path to high-performance thermoelectric ceramics.

6.
Chem Commun (Camb) ; 49(73): 8075-7, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23912639

RESUMO

Upon 20% Te substitution, the band gap decreases from 0.8 eV to 0.65 eV. Rising temperature promotes minority carrier jumps across the band gap, thereby improving electrical conductivity. With low thermal conductivity and large Seebeck coefficients, a remarkable ZT of 0.71 at 873 K is achieved for BiCuSe0.94Te0.06O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA