RESUMO
Carbon material modification and defect engineering are indispensable for bolstering the photocatalytic effectiveness of bismuth halide oxide (BiOX). In this study, a novel porous and defect-rich Ar-CB-2 photocatalyst was synthesized for emerging pollutants degradation. Leveraging the interfacial coupling effect of multi-walled carbon nanotubes (MWCNTs), we expanded the absorption spectrum of BiOI nanosheets and significantly suppressed the recombination of charge carriers. Introducing defects via Argon (Ar) plasma-etching further bolstered the adsorption efficacy and electron transfer properties of photocatalyst. In comparison to the pristine BiOI and CB-2, the Ar-CB-2 photocatalyst demonstrated superior photodegradation efficiency, with the first-order reaction rates for the photodegradation of tetracycline (TC) and bisphenol A (BPA) increasing by 2.83 and 4.53 times, respectively. Further probe experiments revealed that the steady-state concentrations of ·O2- and 1O2 in the Ar-CB-2/light system were enhanced by a factor of 1.67 and 1.28 compared to CB-2/light system. This result confirmed that the porous and defect-rich structure of Ar-CB-2 inhibited electron-hole recombination and boosted photocatalyst-oxygen interaction, swiftly transforming O2 into active oxygen species, thus accelerating their production. Furthermore, the possible degradation pathways for TC and BPA in the Ar-CB-2/light system were predicted. Overall, these findings offered a groundbreaking approach to the development of highly effective photocatalysts, capable of swiftly breaking down emerging pollutants.
Assuntos
Argônio , Compostos Benzidrílicos , Bismuto , Nanotubos de Carbono , Fenóis , Fotólise , Bismuto/química , Nanotubos de Carbono/química , Catálise , Porosidade , Fenóis/química , Compostos Benzidrílicos/química , Argônio/química , Tetraciclina/química , Poluentes Químicos da Água/química , Poluentes Ambientais/química , Processos Fotoquímicos , Gases em Plasma/químicaRESUMO
Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.
Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Meios de Contraste/química , Ecossistema , Poluentes Químicos da Água/química , Iodo/química , Águas Residuárias , Purificação da Água/métodosRESUMO
During the ozonation of wastewater, hydroxyl radicals (â¢OH) induced by the reactions of ozone (O3) with effluent organic matters (EfOMs) play an essential role in degrading ozone-refractory micropollutants. The â¢OH yield provides the absolute â¢OH formation during ozonation. However, the conventional "tert-Butanol (t-BuOH) assay" cannot accurately determine the â¢OH yield since the propagation reactions are inhibited, and there have been few studies on â¢OH production induced by EfOM fractions during ozonation. Alternatively, a "competitive method", which added trace amounts of the â¢OH probe compound to compete with the water matrix and took initiation reactions and propagation reactions into account, was used to determine the actual â¢OH yields (Φ) compared with that obtained by the "t-BuOH assay" (φ). The Φ were significantly higher than φ, indicating that the propagation reactions played important roles in â¢OH formation. The chain propagation reactions facilitation of EfOMs and fractions can be expressed by the chain length (n). The study found significant differences in Φ for EfOMs and fractions, precisely because they have different n. The actual â¢OH yield can be calculated by n and φ as Φ = φ (1 + n)/(nφ + 1), which can be used to accurately predict the removal of micropollutants during ozonation of wastewater.
Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Água , Radical Hidroxila , terc-Butil ÁlcoolRESUMO
Recently, advanced oxidation processes (AOPs) based upon peracetic acid (PAA) with high efficiency for degrading aqueous organic contaminants have attracted extensive attention. Herein, a novel metal-free N-doped carbonaceous catalyst, namely, carbonized polyaniline (CPANI), was applied to activate PAA to degrade phenolic and pharmaceutical pollutants. The results showed that the CPANI/PAA system could effectively degrade 10 µM phenol in 60 min with low concentrations of PAA (0.1 mM) and catalyst (25 mg L-1). This system also performed well within a wide pH range of 5-9 and displayed high tolerance to Cl-, HCO3- and humic acid. The nonradical pathway [singlet oxygen (1O2)] was found to be the dominant pathway for degrading organic contaminants in the CPNAI/PAA system. Systematic characterization revealed that the graphitic N, pyridinic N, carbonyl groups (CO) and defects played the role of active sites on CPANI during the activation of PAA. The catalytic capacity of spent CPANI could be conveniently recovered by thermal treatment. The findings will be helpful for the application of metal-free carbonaceous catalyst/PAA processes in decontaminating water.
Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ácido Peracético , Metais , Oxirredução , Fenóis , ÁguaRESUMO
Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.
Assuntos
Ecossistema , Poluentes Químicos da Água , Água Doce , Plantas , Poluentes Químicos da Água/análiseRESUMO
Fluoroquinolones (FQs), as the most commonly used antibiotics, are ubiquitous in the aquatic environment. The FQs' self-sensitization process could generate reactive oxygen species (ROS), which could react with other coexisting organic pollutants, impacting their transformation behaviors. However, the FQs' influences and mechanisms on the photochemical transformation of coexisting antibiotics are not yet revealed. In this study, we found ofloxacin (OFL) and norfloxacin (NOR), the two common FQs, can obviously accelerate chlortetracycline (CTC) photodegradation. In the presence of OFL and NOR (i.e., 10 µM), CTC photodegradation rate constants increased by 181.1% and 82.9%, respectively. With the help of electron paramagnetic resonance (EPR) and quenching experiments, this enhancement was attributed to aromatic ketone structure in FQs, which absorbed photons to generate ROS (i.e., 3OFL*, 3NOR*,1O2, and â¢OH). Notably, 3OFL* or 3NOR* was dominantly contributed to the enhanced CTC photodegradation, with the contribution ratios of 79.9% and 77.3% in CTC indirect photodegradation, respectively. Compared to CTC direct photodegradation, some new photodegradation products were detected in FQs solution, suggesting that 3OFL* or 3NOR* may oxide CTC through electron transfer. Moreover, the higher triple-excited state energy of OFL and NOR over DFT calculation implied that energy transfer from 3OFL* or 3NOR* to CTC was also theoretically feasible. Therefore, the presence of FQs could significantly accelerate the photodegradation of coexisting antibiotics mainly via electron or energy transfer of 3FQs*. The present study provided a new insight for accurately evaluating environmental behaviors and risks when multiple antibiotics coexist.
RESUMO
Allelochemicals sustained-release microspheres (ACs-SMs) exhibited great inhibition effect on algae, however, few studies have focused on ACs-SMs toxicity on invertebrate. In this study, the effects of single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs exposure on the ingestion, incorporation, and digestion of Daphnia magna Straus (DS) were investigated by stable isotope 15N labeling method. Meanwhile, the diversity and abundance of microflora in DS guts were determined by 16S rRNA genes and cloning methods. The results showed that SH-ACs exposure caused 50% and 33.3% death rates for newborn and adult DS, while RL-ACs exposure caused 10% death rate for newborn DS and no obvious effect on the activity of adult DS. And ACs-SMs exposure did not diminish the motility of both newborn and adult DS, indicating the lower acute toxicity of ACs-SMs. Furthermore, SH-ACs inhibited the ingestion (-6.45%), incorporation (-47.1%) and digestion (-53.8%) abilities of DS and reduced the microbial abundance (-27.7%) in DS guts. Compared with SH-ACs, RL-ACs showed relatively low impact on the ingestion (-3.23%), incorporation (-5.89%) and digestion (-23.9%) abilities of DS. Interestingly, ACs-SMs enhanced the ingestion (+9.68%), incorporation (+52.9%) and digestion (+51.3%) abilities of DS and increased the microbial abundance (+10.7%) in DS guts. Overall ACs and ACs-SMs reduced the diversity of microflora in DS guts. In conclusion, ACs-SMs can release ACs sustainably and prolong the sustained release time, which not only effectively reduce the toxicity of ACs, but also had positive effects on DS.
Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Preparações de Ação Retardada/farmacologia , Digestão , Ingestão de Alimentos , Microesferas , Feromônios , RNA Ribossômico 16S , Poluentes Químicos da Água/toxicidadeRESUMO
The clinical characteristics and prognosis of intracranial hemorrhage (ICH) in patients with hematological diseases remain controversial. This study aimed to describe the clinical characteristics and explore the prognostic factors in such patients. A total of 238 ICH patients with a hematological disease were recruited from the Institute of Hematology and Blood Diseases Hospital, China, from January 2015 to April 2020. The Cox proportional hazards model was used to identify the prognostic factors for 30-day mortality in ICH patients with a hematological disease. There were 123 cases of acute leukemia (AL), 20 of myelodysplasia/myeloproliferative neoplasm, 35 of aplastic anemia (AA), 29 of immune thrombocytopenia (ITP), 19 of congenital/acquired coagulation factor deficiency, and 12 of other hematological diseases. Furthermore, 121 patients presented with a multi-site hemorrhage (MSH), 58 with a single-site hemorrhage in the brain parenchyma (PCH), 23 with a subarachnoid hemorrhage, 33 with a subdural hemorrhage (SH), and three with an epidural hemorrhage. The Cox proportional hazards model indicated association of SH (vs PCH, hazard ratio [HR]: 0.230; 95% confidence interval [CI]: 0.053-0.996; P = 0.049), low white blood cells (≤ 100 × 109/L vs > 100 × 109/L, HR: 0.56; 95% CI: 0.348-0.910; P = 0.019), AA (vs AL, HR: 0.408; 95% CI: 0.203-0.821; P = 0.012), and ITP (vs AL, HR: 0.197; 95% CI: 0.061-0.640; P = 0.007) with improved 30-day mortality. However, increased age (HR: 1.012; 95% CI: 1.001-1.022; P = 0.034), MSH (vs PCH, HR: 1.891; 95% CI: 1.147-3.117; P = 0.012), and a disturbance of consciousness (HR: 1.989; 95% CI: 1.269-3.117; P = 0.003) were associated with increased risk of 30-day mortality. In conclusion, in this study, we revealed the clinical characteristics of Chinese ICH patients with a hematological disease. Moreover, we identified risk factors (age, white blood cells, AA, ITP, SH, MSH, and a disturbance of consciousness) that may influence 30-day mortality.
Assuntos
Anemia Aplástica , Doenças Hematológicas , Leucemia Mieloide Aguda , Trombocitopenia , Humanos , Anemia Aplástica/complicações , Hemorragia Cerebral/complicações , Doenças Hematológicas/complicações , Hematoma Subdural , Hemorragias Intracranianas/etiologia , Leucemia Mieloide Aguda/complicações , Prognóstico , Fatores de Risco , Trombocitopenia/complicaçõesRESUMO
Herein, we developed palladium-catalyzed regio- and diastereoselective difluoromethylthiolation of acrylamides to form the Z-isomer product at room temperature. Using 8-aminoquinoline as a directing group, this protocol resulted in a high efficiency under mild reaction conditions and showed good functional group tolerances, which opens a novel synthetic methodology for accessing SCF2H-containing skeletons. Moreover, mechanistic studies were conducted to obtain insights into the reaction mechanism, and post-functionalization of the product reactions was performed.
RESUMO
Antipyrine (ANT), as a widely used relieve headache, fever anti-inflammatory pharmaceutical in medical treatment, is difficult to be removed completely in water. The application of photocatalytic removal of ANT is restricted to UV light irradiation (<5% of solar energy), and the degradation pathways of ANT require more theoretical evidence. In this study, a series of three dimensions (3D) hierarchical structure multiwall carbon nanotubes/bismuth oxyiodide (MWCNTs/BiOI) photocatalysts were systematically designed and firstly applied to remove ANT through visible light (>43% of solar energy) induced photodegradation. Consequently, the as-prepared MWCNTs/BiOI photocatalysts presented superior photocatalytic activities on ANT degradation with respect to that of BiOI under 60 min visible light irradiation (100% vs 82.2%). Especially, the enhanced photocatalytic mechanism on ANT was analyzed by morphology, optical and photo-electrochemical properties. Results revealed that the designed 3D micro-mesoporous structure could promote the diffusion of photogenerated electron-hole pairs, and the utilization of photoelectrons could be efficiently improved by MWCNTs (1.5 times). Furthermore, based on radicals scavenging experiments, the photogenerated hole (h+) and superoxide radical (O2-) were demonstrated as the dominant active species in ANT photocatalytic oxidation process. The photodegradation pathways of ANT were proposed with the calculation of frontier electron densities (FEDs) and the analysis of LC-MS/MS. This study presents a feasible approach for the high efficiency removal of trace pharmaceuticals under visible light photocatalytic process.
Assuntos
Nanotubos de Carbono , Antipirina , Catálise , Cromatografia Líquida , Luz , Espectrometria de Massas em TandemRESUMO
Dissolved black carbon (DBC), widely distributed in the aquatic environments, can accelerate sunlight-driven photo-transformation of micropollutants, however the photosensitization mechanisms are not clear. Herein, the DBC was extracted from bamboo biochar and fractionated by molecular weight (i.e. <10â¯k, <3â¯k, and <1â¯k Da). The effects of DBC on chlortetracycline (CTC) photolysis behaviors, and the role of chemical composition (i.e., molecular weight and chemical structure) in DBC-mediated photo-transformation were investigated. The results showed that DBC could accelerate CTC photodegradation significantly. At low DBC concentrations (<6.0â¯mgâ¯C/L), the photodegradation rate constant of CTC increased from 0.0299 to 0.0416 min-1 with the increasing DBC concentration. Via quenching experiment, the triplet excited-state of DBC was identified as the dominant reactive intermediate with >90% contribution to total CTC photodegradation. In addition, it was found that the photosensitive efficiency of DBC increased as the molecular weight decreased, and the stronger photosensitization ability exhibited in DBC with low-molecular weight was potentially attributed to its higher content of carbonyl compounds. The observed photosensitive efficiency of DBC sharply decreased after reduction by NaBH4, further confirming the key role of carbonyl compounds in the photosensitization process. Moreover, based on the result of photoproducts, the amidogen in CTC was verified to be susceptible to react with 3DBC*.
Assuntos
Carvão Vegetal/química , Clortetraciclina/química , Sasa , Poluentes Químicos da Água/química , Clortetraciclina/análise , Processos Fotoquímicos , Fotólise , Fuligem , Poluentes Químicos da Água/análiseRESUMO
BACKGROUND/AIMS: Nasopharyngeal carcinoma remains a devastating and difficult disease to treat. This study explores the antineoplastic effect of prodigiosin on nasopharyngeal cancer cells. METHODS: Human nasopharyngeal carcinoma CNE2 cells and human normal nasopharyngeal epithelial NP69 cells were obtained and treated with prodigiosin or fluorouracil (5-FU). Colony formation assay was performed to screen for the optimal experimental concentrations of prodigiosin and 5-FU, and MTT assay was used to examine cell proliferative ability. Flow cytometry was used to examine cell cycle distribution, the scratch test was employed to examine cell migration, and Transwell migration assay (Boyden chamber) was used to study cell invasion. RESULTS: The optimal concentrations of prodigiosin and 5-FU for treatment were 4 mg/L and 0.35 mg/L, respectively. Both prodigiosin and 5-FU inhibited tumor cell proliferation. The percentage of cells in G0/G1 phase was higher and the percentage of cells in S phase was lower in the prodigiosin and 5-FU groups than in the untreated groups. Both prodigiosin and 5-FU inhibited tumor cell migration and tumor cell invasion. CONCLUSIONS: Our results suggest that prodigiosin can inhibit proliferation, migration, and invasion of nasopharyngeal carcinoma cells.
Assuntos
Proliferação de Células/efeitos dos fármacos , Prodigiosina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluoruracila/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologiaRESUMO
In this work, simultaneous generation of hydroxyl radical (â¢OH) and sulfate radical (SO4â¢−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both â¢OH and SO4â¢− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for â¢OH and atrazine forb oth â¢OH and SO4â¢−). The yields of â¢OH and SO4â¢− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 â −O3SO5−, is assumed as the first step, which further decomposes into SO5â¢− and O3â¢−. The subsequent reaction of SO5â¢− with O3is proposed to generate SO4â¢−, while O3â¢− converts to â¢OH. A definition of R(ct,â¢OH) and R(ct,SO4â¢−) (i.e., respective ratios of â¢OH and SO4â¢− exposures to O3 exposure) is adopted to quantify relative contributions of â¢OH and SO4â¢−. Increasing pH leads to increases in both values of R(ct,â¢OH) and R(ct,SO4â¢−) but does not significantly affect the ratio of R(ct,SO4â¢−) to R(ct,â¢OH) (i.e., R(ct,SO4â¢−)/R(ct,â¢OH)), which represents the relative formation of SO4â¢− to â¢OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of â¢OH for their degradation, which may be attributed to the conversion of both â¢OH and SO4â¢− to the more selective carbonate radical (CO3â¢−).Humic acid promotes O3 consumption to generate â¢OH and thus leads to an increase in the R(ct,â¢OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4â¢−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO4â¢− formation and a lower rate constant for the reaction of humic acid with SO4â¢− than with â¢OH. In addition, the efficacy of the O3/PMS process in real water is also confirmed.
Assuntos
Radical Hidroxila/química , Ozônio/química , Peróxidos/química , Sulfatos/química , Atrazina/análise , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Soluções , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(â¢+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of â¼5:1 at pH 5-6 and â¼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(â¢+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(â¢+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(â¢+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(â¢+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(â¢+) with phenol, but they exhibited no pH dependency.
Assuntos
Benzotiazóis/química , Elétrons , Compostos de Manganês/química , Óxidos/química , Fenóis/química , Ácidos Sulfônicos/química , Água/química , Difosfatos/química , Concentração de Íons de Hidrogênio , Cinética , Manganês/química , Oxidantes/química , Oxirredução , Soluções , TermodinâmicaRESUMO
In this work, the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) was shown to exhibit appreciable reactivity toward potassium permanganate [Mn(VII)] in water over a wide pH range of 5-10 with the maxima of second-order rate constants (kMn(VII) = 15-700 M(-1) s(-1)) at pH near its pKa values (7.5/8.5). A novel precursor ion scan (PIS) approach using negative electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQMS) was adopted and further optimized for fast selective detection of brominated oxidation products of TBrBPA by Mn(VII). By setting PIS of m/z 79 and 81, two major products (i.e., 4-(2-hydroxyisopropyl)-2,6-dibromophenol and 4-isopropylene-2,6-dibromophenol) and five minor ones (including 2,6-dibromophenol, 2,6-dibromo-1,4-benzoquinone, and three dimers) were detected and suggested with chemical structures from their product ion spectra and bromine isotope patterns. Reaction pathways mainly involving the initial one-electron oxidation of TBrBPA and subsequent release and further reactions of 2,6-dibromo-4-isopropylphenol carbocation intermediate were proposed. The effectiveness of Mn(VII) for treatment of TBrBPA in real waters was confirmed. It is important to better understand the reactivity and toxicity of primary brominated products before Mn(VII) can be applied for treatment of TBrBPA-contaminated wastewater and source water.
Assuntos
Retardadores de Chama/análise , Bifenil Polibromatos/análise , Permanganato de Potássio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água Doce/química , Cinética , Estrutura Molecular , Oxirredução , Bifenil Polibromatos/química , Espectrometria de Massas por Ionização por Electrospray , Águas Residuárias/química , Poluentes Químicos da Água/químicaRESUMO
The extensive use of bromophenols (BrPs) in industrial products leads to their occurrence in freshwater environments. This study explored the oxidation kinetics of several BrPs (i.e., 2-BrP, 3-BrP, 4-BrP, 2,4-diBrP, and 2,6-diBrP) and potential formation of brominated polymeric products of concern during water treatment with potassium permanganate [Mn(VII)]. These BrPs exhibited appreciable reactivity toward Mn(VII) with the maxima of second-order rate constants (kMn(VII)) at pH near their pKa values, producing bell-shaped pH-rate profiles. The unusual pH-dependency of kMn(VII) was reasonably explained by a tentative reaction model, where the formation of an intermediate between Mn(VII) and dissociated BrP was likely involved. A novel and powerful precursor ion scan (PIS) approach was used for selective detection of brominated oxidation products by liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry. Results showed that brominated dimeric products such as hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and hydroxylated polybrominated biphenyls (OH-PBBs) were readily produced. For instance, 2'-OH-BDE-68, one of the most naturally abundant OH-PBDEs, could be formed at a relatively high yield possibly via the coupling between bromophenoxyl radicals generated from the one-electron oxidation of 2,4-diBrP by Mn(VII). Given the altered or enhanced toxicological effects of these brominated polymeric products compared to the BrP precursors, it is important to better understand their reactivity and fate before Mn(VII) is applied by water utilities for the oxidative treatment of BrP-containing waters.
Assuntos
Halogenação , Fenóis/química , Polímeros/química , Permanganato de Potássio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Modelos Teóricos , Oxirredução , Rios/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
As important organic components in water environments, effluent organic matters (EfOMs) from wastewater treatment plants are widely present in Mn-rich environments or engineered treatment systems. The redox interaction between manganese oxides (MnOx) and EfOMs can lead to their structural changes, which are crucial for ensuring the safety of water environments. Herein, the reactivities of MnOx with EfOMs were evaluated, and it was found that MnOx with high specific surface area, active high-valent manganese content and lattice oxygen content (i.e., amorphous MnO2) possessed stronger oxidizing ability towards EfOMs. Accompanying by EfOMs oxidation, Mn(IV) and Mn(III) were reduced into Mn(II), with Mn(III) as the significant active species. Through molecular-level transformation analysis by ultrahigh mass spectrometry (FT-ICR MS), the highly reactive compounds in EfOMs were clearly determined to be that with more aromatic and unsaturated structures, especially lignin-like compounds (the highest content in EfOMs (over 60 %)). EfOMs were oxidized by amorphous MnO2 into products with lower humification index (0.60 vs. 0.46), smaller apparent molecular weight (386.94 Da vs. 368.68 Da), and higher biodegradability (BOD5/COD: 0.12 vs. 0.78). This finding suggested that redox reactions between MnOx and EfOMs might alter their abiotic and biotic behaviors in receiving water environments.
Assuntos
Compostos de Manganês , Oxirredução , Óxidos , Compostos de Manganês/química , Óxidos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodosRESUMO
In this work, it was found that peroxymonosulfate (PMS) could appreciably accelerate the transformation rates of dichloroacetonitrile (DCAN) and trichloracetonitrile (TCAN) in aqueous solutions, especially under alkaline pHs. The impact of reactive oxygen species scavengers (methyl alcohol for sulfate radical, tert-butyl alcohol for hydroxyl radical, and azide for singlet oxygen) and water matrices (chloride (Cl-), bicarbonate (HCO3-), and natural organic matter (NOM)) on DCAN and TCAN transformation by PMS is evaluated, revealing negligible effects. A nucleophilic hydrolysis pathway, as opposed to an oxidation process, was proposed for the transformation of DCAN and TCAN by PMS, supported by the hydrolyzable characteristics of these compounds and validated through density functional theory calculations. Kinetic analysis indicated that the transformation of DCAN and TCAN by PMS adhered to a second-order kinetic law, with higher reaction rates observed at elevated pH levels within the range of 7.0-10.0. Kinetic modeling incorporating the hydrolytic contributions of water, hydroxyl ion, and protonated and deprotonated PMS (i.e., HSO5- and SO52-) effectively fitted the experimental data. Species-specific second-order rate constants reveal that SO52- exhibited significantly higher reactivity towards DCAN ((1.69 ± 0.22) × 104 M-1h-1) and TCAN ((6.06 ± 0.18) × 104 M-1h-1) compared to HSO5- ((2.14 ± 0.12) × 102 M-1h-1) for DCAN; and (1.378 ± 0.11) × 103 M-1h-1 for TCAN). Comparative analysis of DCAN and TCAN transformation efficiencies by four different oxidants indicated that PMS rivaled chlorine but falls short of hydrogen peroxide, with peroxydisulfate displaying negligible reactivity. Overall, this study uncovers the nucleophilic hydrolysis characteristics of PMS, supplementing its recognized role as an oxidant precursor or mild oxidant, and underscores its significant implications for environmental remediation.
Assuntos
Acetonitrilas , Desinfecção , Peróxidos , Poluentes Químicos da Água , Cinética , Hidrólise , Acetonitrilas/química , Peróxidos/química , Poluentes Químicos da Água/química , Oxirredução , Concentração de Íons de HidrogênioRESUMO
Dissolved black carbon (DBC) released from biochar, is an essential group in the dissolved organic matter (DOM) pool and is widely distributed in aquatic environments. In various advanced oxidation processes (AOPs), DBC exhibits enhanced free radical scavenging compared to typical DOM, attributed to its smaller molecular weight and more compacted aromatic structure; however, the molecular-level transformations of DBC in different AOPs, such as UV/H2O2, UV/PDS, and UV/Chlorine, remain unclear. This study employed a DBC derived from wheat biochar for experimentation. Characterization involved ultraviolet-visible (UV-Vis) spectroscopy and fluorescence excitation-emission-matrix (EEM) spectroscopy, revealing the transformation of DBC through diminished SUVA254 values and reduced intensity of three-dimensional fluorescence peaks. Further insights into the transformation were gained through Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). After each UV-AOP treatment, a conspicuous augmentation in the oxygen content of DBC was observed. The detailed oxygenation processes were elucidated through mass difference analysis, based on 23 types of typical reactions. Results indicated that oxygenation reactions were most frequently detected in all three UV-AOP treatments. Specifically, the hydroxylation (+O) predominated in UV/H2O2, while the di-hydroxylation (+2O) prevailed in UV/PDS. UV/Chlorine treatments commonly exhibited tri-hydroxylation (+3O), with the identification of 1194 Cl-BPs of unknown structures. This study contributes to a comprehensive understanding of the molecular transformations of DBC induced by various free radicals in different UV-AOP processes, leading to a better understanding of the different fates of DBC in UV-AOP processes. In addition, the identification of DBC as a precursor of by-products will also contribute to the understanding of how to inhibit the generation of by-products.
Assuntos
Oxirredução , Raios Ultravioleta , Carbono/química , Peróxido de Hidrogênio/química , Fuligem/química , Carvão Vegetal/químicaRESUMO
Infected wounds produce pus and heal slowly. To address this issue, we developed a rapid-setting SP/SA@BP-C hydrogel by combining sodium alginate (SA) and soy protein (SP) with black phosphorus (BP) grafted with clarithromycin (Cla) and incorporating Ca2+ for chelation. This hydrogel dressing exhibits excellent photothermal (PT) and photodynamic (PD) bacteriostatic effects without biotoxicity, making it suitable for treating infected wounds. Characterization confirmed its successful fabrication, and the bacteriostatic effect demonstrated over 99 % efficacy through the synergistic effects of PT, PD, and Cla. Cellular studies indicated nontoxicity and a promoting effect on cell proliferation (121.6 %). In the mouse-infected wound model, the hydrogel led to complete healing in 12 days, with good recovery of the skin's superficial dermal layer and appendages. Consequently, SP/SA@BP-C is a natural hydrogel dressing with promising properties.