RESUMO
The determination of impact sensitivity of energetic materials traditionally relies on expensive and safety-challenged experimental means. This has instigated a shift towards scientific computations to gain insights into and predict the impact response of energetic materials. In this study, we refine the phonon-vibron coupling coefficients ζ in energetic materials subjected to impact loading, building upon the foundation of the phonon up-pumping model. Considering the full range of interactions between high-order phonon overtones and molecular vibrational frequencies, this is a pivotal element for accurately determining phonon-vibron coupling coefficients ζ. This new coupling coefficient ζ relies exclusively on phonon and molecular vibrational frequencies within the range of 0-700 cm-1. Following a regression analysis involving ζ and impact sensitivity (H50) of 45 molecular nitroexplosives, we reassessed the numerical values of damping factors, establishing a = 2.5 and b = 35. This coefficient is found to be a secondary factor in determining sensitivity, secondary to the rate of decomposition propagation and thermodynamic factor (heat of explosion). Furthermore, the relationship between phonon-vibron coupling coefficients ζ and impact sensitivity was studied in 16 energetic crystalline materials and eight nitrogen-rich energetic salts. It was observed that as the phonon-vibron coupling coefficient increases, the tendency for reduced impact sensitivity H50 still exists.
RESUMO
Due to the simplicity of their composition, the study of the superconducting properties of elemental substances holds significant importance for understanding the mechanisms of high-temperature superconductivity. This work involves simulated calculations to investigate the phase transition sequence and superconducting properties of Sr under pressure. The stability range of the Sr-IV phase C2/c was redefined, determining that it can extend up to 150 GPa, and the phase transition sequence of Sr under high pressure was studied. It was discovered that the d-electrons in the Sr-IV phase significantly contribute to the Fermi surface, a phenomenon closely related to the Van Hove singularity (VHS) near the saddle points. The increase in Tc of Sr under pressure is attributed to phonon softening and strong coupling resulting from the gradual overlap of VHS with the Fermi level, which is associated with the incomplete saturation of s-d electron transfer. Ultimately, the Tc of Sr reaches 17.65 K at 150 GPa, with a λ value of 1.26. This strong EPC is contributed by the interaction between d-electrons and medium-high-frequency phonons. This study extends new pathways for investigating the superconductivity of high-pressure phases of Sr and provides new insights for the theoretical study of elemental superconductors.
RESUMO
Predicting the melting temperature of materials has always been a topic of great concern. This article proposes an alternative model for determining the melting temperature of materials based on the main idea of the Lindemann melting criterion combined with the first-principles calculations of density functional theory. To verify the accuracy of the melting model, this article selected typical ionic crystals of MgO and 10 alkali metal halides as the validation objects. The calculation results indicate that the melting temperature of the MgO crystals and I-VII compounds is in good agreement with the experimental results.
RESUMO
In order to investigate the impact of an external electric field on the sensitivity of ß-HMX explosives, we employ first-principles calculations to determine the molecular structure, dipole moment, and electronic properties of both ß-HMX crystals and individual ß-HMX molecules under varying electric fields. When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of ß-HMX, the calculation results indicate that an increase in the bond length (N1-N3/N1'-N3') of the triggering bond, an increase in the main Qnitro (N3, N3') value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. Among these directions, the [010] direction exhibits the highest sensitivity, which can be attributed to the significantly smaller effective mass along the [010] direction compared with the [001] and [100] directions. Moreover, the application of an external electric field along the Y direction of the coordinate system on individual ß-HMX molecules reveals that the strong polarization effect induced by the electric field enhances the decomposition of the N1-N3 bonds. In addition, due to the periodic potential energy of ß-HXM crystal, the polarization effect of ß-HMX crystal caused by an external electric field is much smaller than that of a single ß-HXM molecule.
RESUMO
Understanding and predicting the bond breaking mechanism of energetic materials before explosion initiation is one of the huge challenges in explosion science. By means of the mean square displacement of the atom from the equilibrium position and theoretical bond breaking tensile change of the chemical bond, we establish a new criterion to judge whether the chemical bond is broken. Further, α-RDX is used as the verification object to verify the accuracy of this model. We obtained an initial decomposition temperature of 434-513 K for α-RDX at 0 GPa, and the initial bond breaking type was N-NO2. Finally, based on this model, we discussed in detail the breaking of chemical bonds of solid nitromethane near the detonation pressure. We think that the high temperature and high pressure caused by the shock wave may break all the chemical bonds of nitromethane near the detonation pressure.
RESUMO
The Raman intensity and other stoichiometric calculations of nitromethane (NM) and 2-nitrimino-5-nitro-hexahydro-1,3,5-triazine (NNHT) have been made by using first-principles density functional theory. We propose a method to judge the initial reaction mechanism of NM and NNHT under pressure based on the Raman intensity. Both the resulting NM and NNHT undergo hydrogen transfer and conventional trigger bond cleavage. And the results obtained from the Raman peak intensities infer a reaction path that is not inferior to the traditional C-NO2 and N-NO2 bond cleavage, thus verifying our results.
RESUMO
The metallization of alkaline earth metal hydrides offers a way to achieve near-room temperature superconductivity. In order to explore the metallization mechanism of these hydrides under pressure, a detailed understanding of the property changes of alkaline earth metal hydrides is required. Based on first-principles calculations, we have systematically investigated the dihydrides (XH2, X = Be, Mg, Ca, Sr, Ba) and tetrahydrides (XH4, X = Mg, Ca, Sr, Ba) of alkaline earth metals, respectively. By applying external pressure, we show that the structures of these alkaline earth metal hydrides undergo a series of phase transitions. Moreover, we investigate how the size of the bandgap decreases and eventually closes and reveal the role of electronegativity of metal elements in the critical pressure of hydride metallization. Remarkably, the hydrogen units (H6 or H8) formed in XH4 can accelerate the metallization process. The increase of the energy level difference in hydrogen units promotes the electroacoustic coupling effect, which is conducive to realization of high superconducting transition temperature (Tc). Our theoretical findings identify MgH4-I4/mmm as having potential to be a high-temperature superconductor and provide unusual ideas for the search of unknown high-temperature superconducting materials.
RESUMO
There are numerous examples of materials that exhibit interesting phenomena at extremely low temperatures, but the difficulty of obtaining absolute zero at high pressure in experiments is sometimes a hurdle to reveal the exact explanation of these low temperature phenomena. Based on the calculations of the phonon spectrum and Gibbs free energy of α-N2 and γ-N2 under different pressures, we found that solid nitrogen at 0 K showed a re-entrant phase transition under continuously increasing pressure. The extremely low temperature in this pressure range turned out to be the main external condition for inducing phase transition as well as phase reversal.
RESUMO
Batteries have become a ubiquitous daily necessity, which are popularly applied to mobile phones and electric vehicles according to their size. Improving the battery cycle life and storage is important, but unexpected discharge products still restrict the upper limit of batter performance such as Li2O2, LiO2, and Li2S. In this study, we calculated electrons and phonons presenting the basic energy states in crystal using the first-principles calculations. The Li2O2 and Li2S are almost insulating due to the wide bandgap from their electronic structure, and doped-active p-orbital may be one of the pathways to improve crystal conduction due to the tendency of the density of states. The LiO2 is metallic, and the electronic structure and phonons show that the discharge products have an ionic feature. In addition, the ionic crystal can produce a larger DC permittivity because it possesses macroscopic polarisation. For Li2O2 and Li2S, the Raman peak of the O-O bonding is strong, while the Raman peak of the S-ion is very weak. The enhanced Raman peak of the S-ion presents a possibility to prevent the shuttle effect in Li-S batteries.
RESUMO
The sensitivity of energetic materials along different crystal directions is not the same and is anisotropic. In order to explore the difference in friction sensitivity of different surfaces, we calculated the structure, excess energy, surface energy, electronic structure, and the nitro group along (1 1 1), (1 1 0), (1 0 1), (0 1 1), (0 0 1), (0 1 0), and (1 0 0) surfaces of EDNA based on density functional theory. The analysis results showed that relative to other surfaces, the (0 0 1) surface has the shortest N-N average bond length, largest N-N average bond population, smallest excess energy and surface energy, widest band gap, and the largest nitro group charge value, which indicates that the (0 0 1) surface has the lowest friction sensitivity compared to other surfaces. Furthermore, the conclusions obtained by analyzing the excess energy are consistent with the results of the N-N bond length and bond population, band gap, and nitro charge. Therefore, we conclude that the friction sensitivity of different surfaces of EDNA can be evaluated using excess energy.
RESUMO
1,3-Diamino-2,4,6-trinitrobenzene (DATB), a nitro aromatic explosive with excellent properties, can be detonated by an electric field. Using first-principles calculation, we have investigated the initial decomposition of DATB under an electric field. In the realm of electric fields, the rotation of the nitro group around the benzene ring will cause deformation of the DATB structure. Furthermore, when an electric field is applied along the [100] or [001] direction, the C4-N10/C2-N8 bonds initiate decomposition due to electron excitation. On the contrary, the electric field along the [010] direction has a weak influence on DATB. These, together with electronic structures and infrared spectroscopy, give us a visual perspective of the energy transfer and the decomposition caused by C-N bond breaking.
RESUMO
The structural, electronic and vibrational properties of solid carbon dioxide phases (I, II, III, and IV) under high pressure are studied using first-principles calculations. The calculated structural parameters are in good agreement with the experimental values. The third-order Birch-Murnaghan equation of state is fitted, and the corresponding parameters are obtained. We obtained the phase boundary points of each phase and plotted the phase diagram of solid carbon dioxide. The influence of pressure on the band structure and density of states is studied. The vibrational properties of the four phases of carbon dioxide were studied in detail, and the infrared and Raman spectra of the four phases were obtained. It can be seen from the calculated spectrum that the number and frequency of vibration peaks are in good agreement with the experimental values. And, we also analyze the influence of pressure on the frequency of vibration mode.
RESUMO
Although few-layer bismuth oxyhalides (BiOX, X = Cl, Br, and I) have been shown to be appropriate for photocatalytic hydrogen production, the hydrogen evolution reaction (HER) activity of BiOX is unrevealed. Herein, the origins of catalytic activity on single-layer BiOX are investigated by using the density functional theory. The grand potential calculations show that the Bi- and BiO-terminations of single-layer BiOX are stable in O-poor and O-rich environments, respectively. The Bi- and BiO-terminations of single-layer BiOX are found to have obviously active sites for HER, whereas the (001) basal planes are inert. The Gibbs free energies for the adsorption of hydrogen atoms on the Bi- and BiO-terminations are close to the optimal value of 0 eV, indicating that single-layer BiOX possess favorable HER performances. The enhanced HER activities on the Bi- and BiO-terminations are attributed to the localized edge states around the Fermi level, which are caused by the Bi 6p-orbital density of the fringe bismuth atoms and O 2p-orbital density of the fringe oxygen atoms, respectively. The results of this work suggest that single-layer BiOX are a family of promising catalysts for water splitting.
RESUMO
Novel MoS2/(MX2)n lateral and (MoS2)/(MX2)n-BN hybrid heterostructures have been designed on monolayer MoS2 to extend its applications. The electronic, interfacial and optical properties of the lateral and hybrid heterostructures have been investigated comparatively using first-principles calculations. It was found that the charge distributions, band gaps, band levels, electrostatic potentials, and optical absorption of the MoS2/(MX2)n lateral heterostructures depend greatly on the width n of MX2, irrespective of the size of the lateral heterostructures. The CBM states of the MoS2/(MX2)n lateral heterostructures dominated by the dz2 orbitals are localized around MoS2, whereas the VBM states of the MoS2/(MX2)n lateral heterostructures are dominated by the MX2 region. Through regulating the width n of the MX2 region in the MoS2/(MX2)n lateral heterostructures, the optical absorption of the lateral heterostructures under visible light can be increased, and the CBM and VBM states of the lateral heterostructures can be located above the hydrogen reduction potential and below the water oxidation potential, respectively. The similar characteristics were observed in the MoS2/(MX2)n-BN hybrid heterostructures, indicating that BN is a good substrate for the MoS2/(MX2)n lateral heterostructures. The analysis implies that forming the lateral and hybrid heterostructures is an effective way to extend the applications of monolayer MoS2 in photocatalytic water and photovoltaic devices.
RESUMO
The effects of X-doping (X = S, Se, Te and Po) on the structural, electronic and optical properties of hexagonal CuAlO2 were studied using first-principles density functional theory. The calculated results showed the obtained lattice constants to increase with increasing atomic number, and the X-doping to be energetically more favorable under Al-rich conditions. The calculated electronic properties showed decreased bandgaps with increasing atomic number, which was due to the better covalent hybridizations after sulfuration doping. The enhanced covalency was further confirmed by calculating the Mulliken atomic populations and bond populations. The density of states indicated the increase of the contribution to antibonding from the X-p states to be a benefit for p-type conductivity. Moreover, the X-doping induced a red shift of the absorption edge.
RESUMO
The effect of vacancies in monolayer MoS2 on the electronic properties of a Ti-MoS2 top contact has been investigated using first-principles calculations. A Mo-vacancy is easier to form than a S-vacancy in a Ti-MoS2 top contact, especially under oxidation conditions. A Mo-vacancy eliminates the Schottky barrier of the Ti-MoS2 top contact, and a S-vacancy reduces the Schottky barrier from 0.28 to 0.15 eV. Mo-vacancies are beneficial for obtaining a high quality p-type Ti-MoS2 top contact, whereas S-vacancies are favorable to achieve a high quality n-type Ti-MoS2 top contact. Moreover, defective Ti-MoS2 top contacts have stronger dipole layers, a higher potential step and more transferred charges than a perfect ones. The electronic properties of Ti-MoS2 top contacts can be tuned by intrinsic vacancies in monolayer MoS2. Our findings provide important insights into the future design and fabrication of novel nanoelectronic devices with monolayer MoS2.
RESUMO
CONTEXT AND RESULTS: The structure, electronic and optical properties of single-layer transition metallic chalcogenides ZrX3 (X = S, Se, Te) have been studied by density functional theory. The electron energy dispersion curve shows that ZrX3 has semiconductor properties, in which the conduction band is mainly contributed by the correlated states of the Zr-d orbital, and the valence band is mainly contributed by the correlated states of the X-p orbital. It is found that b-axis and biaxial strain have great influence on the bandgap and the shift of density of states is also large. At the same time, the peak value of density of states increases greatly when biaxial strain is applied. It is of guiding significance for selecting suitable substrates to prepare two-dimensional ZrX3 materials to study their electronic properties. The calculation of optical constants confirms that ZrX3 has strong optical anisotropy. In the visible range, the light absorption efficiency of ZrX3 in the direction of electric field polarization [100] is higher than that in the direction of [010]. The reflectance spectral results show that ZrS3 and ZrSe3 in the [100] directions have the highest reflectance, and ZrTe3 in the [010] direction has the highest reflectance, even in the long electromagnetic radiation range (up to 10 eV), which is of great significance for the construction of visible optical devices. COMPUTATIONAL METHOD: All computations have been carried out based on density functional theory (DFT) as implemented in the CASTEP code. The pseudo-potential is adopted by the norm conserving, and the exchange correlation functional is adopted by the Perdew-Burke-Ernzerhof in local generalized gradient approximation (GGA).
RESUMO
CONTEXT AND RESULTS : In this paper, the crystal structure, electronic, optical, and mechanical properties of SrVO3 have been systematically studied by first-principles calculation. The results show that the calculated lattice parameters are in good agreement with the experimental values of X-ray diffraction. The density of states is described in detail in this paper. By analyzing the crystal structure and electronic properties of SrVO3, the magnetic properties of SrVO3 are obtained from the one unpaired electrons of V and the exchange interaction between two V ions. At the same time, a detailed analysis of the optical properties of SrVO3 was conducted, and it was found that it is transparent in the visible light range. Finally, the mechanical properties of SrVO3 are calculated, which can provide some references for future research. COMPUTATIONAL METHOD: In this paper, a first-principles method based on density functional theory (DFT) is reported for PBE-GGA analysis using the plane wave-pseudo potential method in a quantum concentrate packet, U value of 7 eV to V-d and a U value of 2 eV to O-p, Grimme correction by DFT-D method. The k points in the Brillouin region are set to 4 × 4 × 4. The energy convergence criterion for self-consistent field calculation is set at 5.0 × 10-6 eV/atom, and the cutoff energy is 1170 eV. In this paper, the force acting on each atom is not more than 0.01 eV/Å, the maximum stress is not more than 0.02GPa, and the maximum atomic displacement is 5 × 10-4 Å.
RESUMO
CONTEXT: The key factor in designing heat-resistant energetic materials is their thermal sensitivity. Further research and prediction of thermal sensitivity remains a great challenge for us. This study is based on first-principles calculations and establishes a theoretical model, which comprehensively considers band gap, density of states, and Young's modulus to obtain a empirical parameter Ψ. A quantitative relationship was established between the new parameter and the thermal decomposition temperature. The value of Ψ is calculated for 10 energetic materials and is found to have a strong correlation with the experimental thermal decomposition temperature. This further proves the reliability of our model. Specifically, the larger the value of Ψ, the higher the thermal decomposition temperature, and the more stable the energetic material will be. Therefore, to some extent, we can use the new parameter Ψ calculated by the model to predict thermal sensitivity. METHODS: Based on first-principles, this paper used the Cambridge Serial Total Energy Package (CASTEP) module of Materials Studio (MS) for calculations. The Perdew-Burke-Ernzerhof (PBE) functionals in Generalized Gradient Approximation (GGA) method as well as the Grimme dispersion correction was used in this paper.
RESUMO
CONTEXT: Energy-containing materials such as explosives have attracted considerable interest recently. In the field of high-energy materials, tetrazine and its derivatives can largely meet the requirements of high nitrogen content and oxygen balance. Nitrogen-rich energetic salts are important research subjects. Nitrogen-rich salt of 3,6-dinitramino-1,2,4,5-tetrazine is a high-energy nitrogen-rich material, but there are few related studies. This paper systematically studies the crystal structure and electronic, vibrational, and thermodynamic properties of (NH4)2(DNAT). The lattice parameters of (NH4)2(DNAT) are observed to align well with the experimental values. The properties of electrons are analyzed by band structure and density of states (DOS). The phonon dispersion curves indicate that the compound is dynamically stable. The vibrational modes of bonds and chemical groups are described in detail, and the peaks in the Raman and infrared spectra are assigned to different vibration modes. Based on the vibration characteristics, thermodynamic properties such as enthalpy (H), Helmholtz free energy (F), entropy (S), Gibbs free energy (G), constant volume heat capacity (CV), and Debye temperature (Θ) are analyzed. This article can pave the way for subsequent work or provide data support to other researchers, promoting further research. METHODS: In this study, we utilized the density functional theory (DFT) for our calculations. The exchange-correlation potential and van der Waals interactions were characterized based on the GGA-PBE + G function calculation. We obtained Brillouin zone integrals using Monkhorst-Pack k-point grids, with the k-point of the Brillouin zone set to a 2 × 2 × 2 grid. During the self-consistent field operation, we set the total energy convergence tolerance to 5 × 10-6 eV per atom. The cut-off energy for the calculation was established at 830 eV. Additionally, the states of H (1s1), C (2s2 2p2), N (2s2 2p3), and O (2s2 2p4) were treated as valence electrons in our study.