Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 47(1): e2300751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234032

RESUMO

Gancao Xiexin Decoction (GCXXD) is a traditional Chinese decoction that is often used in treating gastric ulcers. However, the substance basis and mechanism of action remain unclear. In this study, in vivo and in vitro components of GCXXD were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. The compound Discover platform was used to ultimately enable rapid identification of compounds. Acquire X intelligent data acquisition technology software was innovatively adopted. In the process of collecting drug-containing plasma, all components detected in blank plasma samples were excluded to eliminate the interference and influence of endogenous components in plasma, making the analysis results more accurate and reliable. At the same time, the possibility of selecting precursor parent ions with low concentration levels within the chromatographic peak can be increased, improving the coverage and integrality of the detection of components in vivo. Also, the targeted network pharmacology strategy combined with molecular docking was established to explore the mechanism of GCXXD in treating gastric ulcers. As a result, 113 components were identified, 41 of which could enter the bloodstream and exert therapeutic effects in vivo. The main effective components are glycyrrhizic acid, 6-gingerol, jatrorrhizine, wogonin, palmatine, and liquiritigenin, main targets in vivo were related to ALB, IL6, and VEGF, which play an important role in anti-inflammatory and promoting angiogenesis. In summary, this study adopted a comprehensive analysis strategy to reveal the pharmacodynamic material basis and mechanism of GCXXD against gastric ulcers, providing a scientific basis for its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza , Úlcera Gástrica , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Úlcera Gástrica/tratamento farmacológico , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química
2.
J Pharm Biomed Anal ; 240: 115930, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157740

RESUMO

Nervonic acid is a natural component of breast milk and is frequently used as a food additive due to its excellent neuroprotective effects. Although it has been reported that nervonic acid may play a role in the recovery of human cognitive impairment, its specific mechanism of action is still unclear. In this study, the results of serum biochemical indexes showed that nervonic acid improved inflammation and reduced amyloid ß peptide (Aß) deposition and tau protein phosphorylation in Alzheimer's disease (AD) rats. Subsequently, we further used a metabolomics approach to investigate the potential mechanism of action of nervonic acid in the treatment of AD. The results of serum and urine metabolomics study showed that the intervention of nervonic acid significantly reversed the metabolic profile disorder in AD rats. A total of 52 metabolites were identified. They mainly involved linoleic acid metabolism, alpha-linolenic acid metabolism, phenylalanine metabolism and arachidonic acid metabolism, and all these metabolic pathways were associated with the emergence of inflammation in vivo. It suggests that the therapeutic effect of nervonic acid on AD is likely to be produced by ameliorating inflammation. The results obtained in this study provide new insights into the mechanism of nervonic acid treatment of AD and lay a foundation for the clinical application of nervonic acid in the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Ácidos Graxos Monoinsaturados , Humanos , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Inflamação/tratamento farmacológico , Biomarcadores
3.
Int Immunopharmacol ; 140: 112812, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094360

RESUMO

Diabetic nephropathy (DN) is one of the leading clinical causes of end-stage renal failure. The classical aldose reductase (AR) inhibitor epalrestat shows beneficial effect on renal dysfunction induced by DN, with metabolic profile and molecular mechanisms remains to be investigated further. In the current study, integrated untargeted metabolomics, network pharmacology and molecular dynamics approaches were applied to explore the therapeutic mechanisms of epalrestat against DN. Firstly, untargeted serum and urine metabolomics analysis based on UPLC-Q-TOF-MS was performed, revealed that epalrestat could regulate the metabolic disorders of amino acids metabolism, arachidonic acid metabolism, pyrimidine metabolism and citrate cycle metabolism pathways after DN. Subsequently, metabolomics-based network analysis was carried out to predict potential active targets of epalrestat, mainly involving AGE-RAGE signaling pathway, TNF signaling pathway and HIF-1 signaling pathway. Moreover, a 100 ns molecular dynamics approach was employed to validate the interactions between epalrestat and the core targets, showing that epalrestat could form remarkable tight binding with GLUT1 and NFκB than it with AR. Surface-plasmon resonance assay further verified epalrestat could bind GLUT1 and NFκB proteins specifically. Overall, integrated system network analysis not only demonstrated that epalrestat could attenuate DN induced metabolic disorders and renal injuries, but also revealed that it could interact with multi-targets to play a synergistic regulatory role in the treatment of DN.

4.
Food Chem X ; 23: 101331, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39071939

RESUMO

To investigate the correlation between the difference of secondary metabolites and the disease-resistance activity of different varieties of Congou black tea. Among a total of 657 secondary metabolites identified, 183 metabolites had anti-disease activity, 113 were key active ingredients in traditional Chinese medicine (TCM), 73.22% had multiple anti-disease activities, and all were mainly flavonoids and phenolic acids. The main enriched metabolic pathways were phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, flavonoid biosynthesis, and metabolic pathways. Flavonoid and phenolic acid secondary metabolites were more correlated with anti-disease activity and key active TCM ingredients. Conclusion: The types of JGY and Q601 Congou black tea of the relative contents show large differences in secondary metabolites. Flavonoid and phenolic acid secondary metabolites were identified as the primary factors contributing to the variation in secondary metabolites among different varieties of Congou black tea. These compounds also exhibited a stronger correlation with disease resistance activity.

5.
J Pharm Biomed Anal ; 242: 116019, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382315

RESUMO

Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.


Assuntos
Ginsenosídeos , Panax , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/análise , Metabolômica/métodos , Panax/química , Polissacarídeos
6.
J Pharm Biomed Anal ; 249: 116339, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39024794

RESUMO

Codonopsis Radix (CR), a traditional tonic medicinal material in China, has been proven to possess a variety of bioactive functions. However, its chemical composition and in vivo metabolic pattern have not been fully elucidated. In this study, AB-8 macroporous resin column chromatography was employed for the enrichment of small molecular components in CR. Furthermore, a method combining ultra-performance liquid chromatography-quadrupole-orbitrap mass spectrometry with Acquire X intelligent data acquisition technology software was developed for the preliminary screening and identification of the chemical composition of CR in vitro and their metabolites in vivo. As a result, a total of 116 components were preliminarily characterized in the CR extract, including 28 polyacetylenes, 33 organic acids, 4 amino acids, 23 alkaloids, 9 phenylpropanoids, 6 terpenoids, 2 nucleosides, and 11 others. Additionally, a total of 84 compounds, including 37 prototype components and 47 metabolites, were identified in the plasma, urine, and feces of rats after oral administration of CR. Specifically, 11, 24, 19, 32, and 25 constituents were identified in the heart, liver, spleen, lung, and kidney, respectively. Of note, the lung and spleen are the organs with the highest distribution of CR compounds. These findings will serve as valuable data for future research on the correlation between the chemical composition and pharmacological effects of CR.


Assuntos
Codonopsis , Medicamentos de Ervas Chinesas , Animais , Ratos , Administração Oral , Alcaloides/análise , Alcaloides/química , Cromatografia Líquida de Alta Pressão/métodos , Codonopsis/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Fezes/química , Espectrometria de Massas/métodos , Metaboloma , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Raízes de Plantas/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
7.
Front Microbiol ; 15: 1344992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476945

RESUMO

Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA