Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.304
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 612(7939): 232-235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477130

RESUMO

It is generally believed that long-duration gamma-ray bursts (GRBs) are associated with massive star core collapse1, whereas short-duration GRBs are associated with mergers of compact star binaries2. However, growing observations3-6 have suggested that oddball GRBs do exist, and several criteria (prompt emission properties, supernova/kilonova associations and host galaxy properties) rather than burst duration only are needed to classify GRBs physically7. A previously reported long-duration burst, GRB 060614 (ref. 3), could be viewed as a short GRB with extended emission if it were observed at a larger distance8 and was associated with a kilonova-like feature9. As a result, it belongs to the type I (compact star merger) GRB category and is probably of binary neutron star (NS) merger origin. Here we report a peculiar long-duration burst, GRB 211211A, whose prompt emission properties in many aspects differ from all known type I GRBs, yet its multiband observations suggest a non-massive-star origin. In particular, substantial excess emission in both optical and near-infrared wavelengths has been discovered (see also ref. 10), which resembles kilonova emission, as observed in some type I GRBs. These observations point towards a new progenitor type of GRBs. A scenario invoking a white dwarf (WD)-NS merger with a post-merger magnetar engine provides a self-consistent interpretation for all the observations, including prompt gamma rays, early X-ray afterglow, as well as the engine-fed11,12 kilonova emission.


Assuntos
Raios gama
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349057

RESUMO

Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.


Assuntos
Análise de Dados , Idioma , Sítios de Ligação , Sequência de Aminoácidos , Bases de Dados Factuais
3.
Nucleic Acids Res ; 52(1): 223-242, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956270

RESUMO

Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol ß. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.


Assuntos
Reparo por Excisão , Proteínas Repressoras , Animais , Humanos , Camundongos , Dano ao DNA , Reparo do DNA/genética , Genes Supressores de Tumor , Oncogenes , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
4.
Proc Natl Acad Sci U S A ; 120(51): e2310944120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085782

RESUMO

Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.


Assuntos
Apoptossomas , Caspases , Caspase 9/metabolismo , Apoptossomas/química , Caspases/metabolismo , Apoptose , Espectroscopia de Ressonância Magnética , Caspase 3/metabolismo
5.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289102

RESUMO

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Mamíferos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , RNA Subgenômico , Proteínas Virais/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
6.
J Cell Mol Med ; 28(6): e18195, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429907

RESUMO

METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , Metiltransferases , Humanos , Biomarcadores , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Glicólise/genética , Ácido Láctico , Metiltransferases/genética , RNA Endógeno Competitivo
7.
BMC Genomics ; 25(1): 420, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684985

RESUMO

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.


Assuntos
Clima , Genômica , Cabras , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Cabras/genética , Cabras/fisiologia , Genômica/métodos , Adaptação Fisiológica/genética , Cruzamento , Haplótipos
8.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462771

RESUMO

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Peroxidação de Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico
9.
Anal Chem ; 96(8): 3335-3344, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363654

RESUMO

Metabolomics has emerged as a powerful tool in biomedical research to understand the pathophysiological processes and metabolic biomarkers of diseases. Nevertheless, it is a significant challenge in metabolomics to identify the reliable core metabolites that are closely associated with the occurrence or progression of diseases. Here, we proposed a new research framework by integrating detection-based metabolomics with computational network biology for function-guided and network-based identification of core metabolites, namely, FNICM. The proposed FNICM methodology is successfully utilized to uncover ulcerative colitis (UC)-related core metabolites based on the significantly perturbed metabolic subnetwork. First, seed metabolites were screened out using prior biological knowledge and targeted metabolomics. Second, by leveraging network topology, the perturbations of the detected seed metabolites were propagated to other undetected ones. Ultimately, 35 core metabolites were identified by controllability analysis and were further hierarchized into six levels based on confidence level and their potential significance. The specificity and generalizability of the discovered core metabolites, used as UC's diagnostic markers, were further validated using published data sets of UC patients. More importantly, we demonstrated the broad applicability and practicality of the FNICM framework in different contexts by applying it to multiple clinical data sets, including inflammatory bowel disease, colorectal cancer, and acute coronary syndrome. In addition, FNICM was also demonstrated as a practicality methodology to identify core metabolites correlated with the therapeutic effects of Clematis saponins. Overall, the FNICM methodology is a new framework for identifying reliable core metabolites for disease diagnosis and drug treatment from a systemic and a holistic perspective.


Assuntos
Colite Ulcerativa , Metabolômica , Humanos , Metabolômica/métodos , Biologia Computacional/métodos , Colite Ulcerativa/diagnóstico
10.
Anal Chem ; 96(22): 9069-9077, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38749062

RESUMO

Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 µV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.

11.
Small ; 20(6): e2305700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797186

RESUMO

It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.

12.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060268

RESUMO

SUMMARY: The Local Disordered Region Sampling (LDRS, pronounced loaders) tool is a new module developed for IDPConformerGenerator, a previously validated approach to model intrinsically disordered proteins (IDPs). The IDPConformerGenerator LDRS module provides a method for generating all-atom conformations of intrinsically disordered protein regions at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB or mmCIF formatted structural template of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo-Side Chain Entropy, transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, the ability to be used as a library and via command-line, and the computational speed of the IDPConformerGenerator platform. AVAILABILITY AND IMPLEMENTATION: The LDRS module is part of the IDPConformerGenerator modeling suite, which can be downloaded from GitHub at https://github.com/julie-forman-kay-lab/IDPConformerGenerator. IDPConformerGenerator is written in Python3 and works on Linux, Microsoft Windows, and Mac OS versions that support DSSP. Users can utilize LDRS's Python API for scripting the same way they can use any part of IDPConformerGenerator's API, by importing functions from the "idpconfgen.ldrs_helper" library. Otherwise, LDRS can be used as a command line interface application within IDPConformerGenerator. Full documentation is available within the command-line interface as well as on IDPConformerGenerator's official documentation pages (https://idpconformergenerator.readthedocs.io/en/latest/).


Assuntos
Proteínas Intrinsicamente Desordenadas , Software , Biblioteca Gênica , Proteínas de Membrana , Documentação
13.
Phys Rev Lett ; 132(15): 156503, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683001

RESUMO

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm. One important question we address in this Letter is whether the SMG transition corresponds to a true unitary conformal field theory. We employ the sharp diagnosis including the scaling of disorder operator and Rényi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d unitary conformal field theory.

14.
BMC Cancer ; 24(1): 360, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509492

RESUMO

BACKGROUND: Endometrial cancer is a prevalent gynecologic malignancy found in postmenopausal women. However, in the last two decades, the incidence of early-stage has doubled in women under 40 years old. This study aimed to investigate the clinical and pathological characteristics and adjuvant therapeutic modalities of both young and not -young patients with early-stage endometrial cancer in China's real world. METHODS: This retrospective study analyzed patients with early-stage endometrial cancer at 13 medical institutions in China from 1999 to 2015. The patients were divided into two groups: young (≤ 45 years old) and non-young (> 45 years old). Statistical comparisons were conducted between the two groups for clinical characteristics, pathological features, and survival. The study also identified factors that affect local recurrence-free survival (LRFS) using Cox proportional risk regression analysis. Propensity score matching (1:1) was used to compare the effects of local control between vaginal brachytherapy (VBT) alone and pelvic external beam radiotherapy (EBRT) ± VBT. RESULTS: The study involved 1,280 patients, 150 of whom were 45 years old or younger. The young group exhibited a significantly higher proportion of stage II, low-risk, lower uterine segment infiltration (LUSI), and cervical invasion compared to the non-young group. Additionally, the young patients had significantly larger maximum tumor diameters. The young group also had a significantly higher five-year overall survival (OS) and a five-year LRFS. Age is an independent risk factor for LRFS. There was no significant difference in LRFS between young patients with intermediate- to high-risk early-stage endometrial cancer who received EBRT ± VBT and those who received VBT alone. CONCLUSIONS: In the present study, young patients had better characteristics than the non-young group, while they exhibited higher levels of aggressiveness in certain aspects. The LRFS and OS outcomes were better in young patients. Age is an independent risk factor for LRFS. Additionally, VBT alone may be a suitable option for patients under 45 years of age with intermediate- to high-risk early-stage endometrial cancer, as it reduces the risk of toxic reactions and future second cancers while maintaining similar local control as EBRT.


Assuntos
Braquiterapia , Neoplasias do Endométrio , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Braquiterapia/efeitos adversos , Radioterapia Adjuvante , Vagina/patologia , Estadiamento de Neoplasias
15.
Artigo em Inglês | MEDLINE | ID: mdl-38197783

RESUMO

A Gram-positive, acid-fast, aerobic, rapidly growing and non-motile strain was isolated from lead-zinc mine tailing sampled in Lanping, Yunnan province, Southwest China. 16S rRNA gene sequence analysis showed that the most closely related species of strain KC 300T was Mycolicibacterium litorale CGMCC 4.5724T (98.47 %). Additionally, phylogenomic and specific conserved signature indel analysis revealed that strain KC 300T should be a member of genus Mycolicibacterium, and Mycobacterium palauense CECT 8779T and Mycobacterium grossiae DSM 104744T should also members of genus Mycolicibacterium. The genome size of strain KC 300T was 6.2 Mb with an in silico DNA G+C content of 69.2 mol%. Chemotaxonomic characteristics of strain KC 300T were also consistent with the genus Mycolicibacterium. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values, as well as phenotypic, physiological and biochemical characteristics, support that strain KC 300T represents a new species within the genus Mycolicibacterium, for which the name Mycolicibacterium arseniciresistens sp. nov. is proposed, with the type strain KC 300T (=CGMCC 1.19494T=JCM 35915T). In addition, we reclassified Mycobacterium palauense and Mycobacterium grossiae as Mycolicibacterium palauense comb. nov. and Mycolicibacterium grossiae comb. nov., respectively.


Assuntos
Mycobacterium , Zinco , RNA Ribossômico 16S/genética , Composição de Bases , China , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Mycobacterium/genética
16.
Fish Shellfish Immunol ; 145: 109370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216004

RESUMO

Live commensal Bacillus siamensis LF4 showed reparative potentials against high SM-induced negative effects, but whether its paraprobiotic (heat-killed B. siamensis, HKBS) and postbiotic (cell-free supernatant, CFS) forms had reparative functions and potential mechanisms are not yet known. In this study, the reparative functions of HKBS and CFS were investigated by establishing an injured model of spotted seabass (Lateolabrax maculatus) treated with dietary high soybean meal (SM). The results showed that HKBS and CFS effectively mitigated growth suppression, immune deficiency, and liver injury induced by dietary high SM. Simultaneously, HKBS and CFS application positively shaped intestinal microbiota by increased the abundance of beneficial bacteria (Fusobacteria, Firmicutes, Bacteroidota, and Cetobacterium) and decreased harmful bacteria (Proteobacteria and Plesiomonasare). Additionally, HKBS and CFS improved SM-induced intestinal injury by restoring intestinal morphology, upregulating the expression of tight junction proteins, anti-inflammatory cytokines, antimicrobial peptides, downregulating the expression of pro-inflammatory cytokines and apoptotic proteins. Furthermore, HKBS and CFS intervention significantly activated TLR2, TLR5 and MyD88 signaling, and eventually inhibited p38 and NF-κB pathways. In conclusion, paraprobiotic (HKBS) and postbiotic (CFS) from B. siamensis LF4 can improve growth, immunity, repair liver and intestinal injury, and shape intestinal microbiota in L. maculatus fed high soybean meal diet, and TLRs/p38 MAPK/NF-κB signal pathways might be involved in those processes. These results will serve as a base for future application of paraprobiotics and postbiotics to prevent and repair SM-induced adverse effects in fish aquaculture.


Assuntos
Bacillus , Bass , NF-kappa B , Animais , Farinha , Dieta , Fígado/metabolismo , Citocinas/metabolismo , Ração Animal/análise
17.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729251

RESUMO

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Assuntos
Ração Animal , Bacillus , Dieta , Disbiose , Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Glycine max , Lipopolissacarídeos , Peptidoglicano , Ácidos Teicoicos , Animais , Doenças dos Peixes/imunologia , Ração Animal/análise , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Disbiose/veterinária , Disbiose/imunologia , Bacillus/fisiologia , Bacillus/química , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta/veterinária , Glycine max/química , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia , Peptidoglicano/farmacologia , Peptidoglicano/administração & dosagem , Bass/imunologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Suplementos Nutricionais/análise , Distribuição Aleatória
18.
J Chem Inf Model ; 64(3): 1043-1049, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270339

RESUMO

The quickly increasing size of the Protein Data Bank is challenging biologists to develop a more scalable protein structure alignment tool for fast structure database search. Although many protein structure search algorithms and programs have been designed and implemented for this purpose, most require a large amount of computational time. We propose a novel protein structure search approach, TM-search, which is based on the pairwise structure alignment program TM-align and a new iterative clustering algorithm. Benchmark tests demonstrate that TM-search is 27 times faster than a TM-align full database search while still being able to identify ∼90% of all high TM-score hits, which is 2-10 times more than other existing programs such as Foldseek, Dali, and PSI-BLAST.


Assuntos
Algoritmos , Proteínas , Bases de Dados de Proteínas , Alinhamento de Sequência , Proteínas/química , Benchmarking , Software
19.
Phys Chem Chem Phys ; 26(3): 2629-2637, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174360

RESUMO

Using first-principles calculations, we predicted three novel superhard semiconducting structures of C8B2N2 with a space group of P3m1. We investigated their mechanical properties and electronic structures up to 100 GPa. These three structures were successfully derived by substituting carbon (C) atoms with isoelectronic boron (B) and nitrogen (N) atoms in the P3m1 phase, which is the most stable structure of BCN and exhibits exceptional mechanical properties. Our results indicated that these structures had superior energy over previously reported t-C8B2N2, achieved by replacing C atoms in the diamond supercell with B and N atoms. To ensure their stable existence, we thoroughly examined their mechanical and dynamical stabilities, and we found that their hardness values reached 82.4, 83.1, and 82.0 GPa, which were considerably higher than that of t-C8B2N2 and even surpassing the hardness of c-BN. Calculations of the electron localization function revealed that the stronger carbon-carbon covalent bonds made them much harder than t-C8B2N2. Additionally, our further calculations of band structures revealed that these materials had indirect bandgaps of 4.164, 4.692, and 3.582 eV. These findings suggest that these materials have the potential to be used as superhard semiconductors, potentially surpassing conventional superhard materials.

20.
Phys Chem Chem Phys ; 26(7): 6351-6361, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315085

RESUMO

The exploration of the physical attributes of the recently discovered orthocarbonate Sr3CO5 is significant for comprehending the carbon cycle and storage mechanisms within the Earth's interior. In this study, first-principles calculations are initially used to examine the structural phase transitions of Sr3CO5 polymorphs within the range of lower mantle pressures. The results suggest that Sr3CO5 with the Cmcm phase exhibits a minimal enthalpy between 8.3 and 30.3 GPa. As the pressure exceeds 30.3 GPa, the Cmcm phase undergoes a transition to the I4/mcm phase, while the experimentally observed Pnma phase remains metastable under our studied pressure. Furthermore, the structural data of SrO, SrCO3, and Sr3CO5 polymorphs are utilized to develop a deep learning potential model suitable for the Sr-C-O system, and the pressure-volume relationship and elastic constants calculated using the potential model are in line with the available results. Subsequently, the elastic properties of Cmcm and I4/mcm phases in Sr3CO5 at high temperature and pressure are calculated using the molecular dynamics method. The results indicate that the I4/mcm phase exhibits higher temperature sensitivity in terms of elastic moduli and wave velocities compared to the Cmcm phase. Finally, the thermodynamic properties of the Cmcm and I4/mcm phases are predicted in the range of 0-2000 K and 10-120 GPa, revealing that the heat capacity and bulk thermal expansion coefficient of both phases increase with temperature, with the constant volume heat capacity gradually approaching the Dulong-Petit limit as the temperature rises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA