Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Pulm Med ; 22(1): 432, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414971

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a common and potentially life-threatening condition. Since it is considered a 'do not miss' diagnosis, PE tends to be over-investigated beyond the evidence-based clinical decision support systems (CDSS), which in turn subjects patients to unnecessary radiation and contrast agent exposure with no apparent benefits in terms of outcome. The purpose of this study was to evaluate the yield of 'clinical hunch' (gestalt) and four CDSS: the PERC Rule, Wells score, revised Geneva score, and Years criteria. METHODS: A review was conducted on the Electronic Medical Records (EMR) of 1566 patients from the Emergency Department at a tertiary teaching hospital who underwent CTPA from the 1st of January 2018 to the 31st of December 2019. The scores for the four CDSS were calculated retrospectively from the EMR data. We considered that a CTPA had been ordered on a clinical hunch when there was no mention of CDSS in the EMR, and no D-dimer test. A bypass of CDSS was confirmed when any step of the diagnostic algorithms was not followed. RESULTS: Of the total 1566 patients who underwent CTPA, 265 (17%) were positive for PE. The diagnosis yield from the five decision groups (clinical hunch and four CDSS) was as follows-clinical hunch, 15%; PERC rule, 18% (6% when bypassed); Wells score, 19% (11% when bypassed); revised Geneva score, 26% (13% when bypassed); and YEARS criteria, 18% (6% when bypassed). CONCLUSION: Clinicians should trust the evidence-based clinical decision support systems in line with the international guidelines to diagnose PE.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Embolia Pulmonar , Humanos , Doença Aguda , Angiografia , Embolia Pulmonar/diagnóstico , Estudos Retrospectivos
2.
Antioxidants (Basel) ; 12(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136163

RESUMO

High-intensity interval training (HIIT) and hyperbaric oxygen therapy (HBOT) induce reactive oxygen species (ROS) formation and have immunomodulatory effects. The lack of readily available biomarkers for assessing the dose-response relationship is a challenge in the clinical use of HBOT, motivating this feasibility study to evaluate the methods and variability. The overall hypothesis was that a short session of hyperbaric oxygen (HBO2) would have measurable effects on immune cells in the same physiological range as shown in HIIT; and that the individual response to these interventions can be monitored in venous blood and/or peripheral blood mononuclear cells (PBMCs). Ten healthy volunteers performed two interventions; a 28 min HIIT session and 28 min HBO2 in a crossover design. We evaluated bulk RNA sequencing data from PBMCs, with a separate analysis of mRNA and microRNA. Blood gases, peripheral venous oxygen saturation (SpvO2), and ROS levels were measured in peripheral venous blood. We observed an overlap in the gene expression changes in 166 genes in response to HIIT and HBO2, mostly involved in hypoxic or inflammatory pathways. Both interventions were followed by downregulation of several NF-κB signaling genes in response to both HBO2 and HIIT, while several interferon α/γ signaling genes were upregulated. Only 12 microRNA were significantly changed in HBO2 and 6 in HIIT, without overlap between interventions. ROS levels were elevated in blood at 30 min and 60 min compared to the baseline during HIIT, but not during/after HBO2. In conclusion, HBOT changed the gene expression in a number of pathways measurable in PBMC. The correlation of these changes with the dose and individual response to treatment warrants further investigation.

3.
J Clin Med ; 12(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510965

RESUMO

BACKGROUND: A few prospective trials and case series have suggested that hyperbaric oxygen therapy (HBOT) may be efficacious for the treatment of severe COVID-19, but safety is a concern for critically ill patients. We present an interim analysis of the safety of HBOT via a randomized controlled trial (COVID-19-HBO). METHODS: A randomized controlled, open-label, clinical trial was conducted in compliance with good clinical practice to explore the safety and efficacy of HBOT for severe COVID-19 in critically ill patients with moderate acute respiratory distress syndrome (ARDS). Between 3 June 2020, and 17 May 2021, 31 patients with severe COVID-19 and moderate-to-severe ARDS, a ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) < 26.7 kPa (200 mmHg), and at least two defined risk factors for intensive care unit (ICU) admission and/or mortality were enrolled in the trial and randomized 1:1 to best practice, or HBOT in addition to best practice. The subjects allocated to HBOT received a maximum of five treatments at 2.4 atmospheres absolute (ATA) for 80 min over seven days. The subjects were followed up for 30 days. The safety endpoints were analyzed. RESULTS: Adverse events (AEs) were common. Hypoxia was the most common adverse event reported. There was no statistically significant difference between the groups. Numerically, serious adverse events (SAEs) and barotrauma were more frequent in the control group, and the differences between groups were in favor of the HBOT in PaO2/FiO2 (PFI) and the national early warning score (NEWS); statistically, however, the differences were not significant at day 7, and no difference was observed for the total oxygen burden and cumulative pulmonary oxygen toxicity dose (CPTD). CONCLUSION: HBOT appears to be safe as an intervention for critically ill patients with moderate-to-severe ARDS induced by COVID-19. CLINICAL TRIAL REGISTRATION: NCT04327505 (31 March 2020) and EudraCT 2020-001349-37 (24 April 2020).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA