Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 148(1): 3, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980423

RESUMO

This study investigates various pathological tau isoforms in the retina of individuals with early and advanced Alzheimer's disease (AD), exploring their connection with disease status. Retinal cross-sections from predefined superior-temporal and inferior-temporal subregions and corresponding brains from neuropathologically confirmed AD patients with a clinical diagnosis of either mild cognitive impairment (MCI) or dementia (n = 45) were compared with retinas from age- and sex-matched individuals with normal cognition (n = 30) and non-AD dementia (n = 4). Retinal tau isoforms, including tau tangles, paired helical filament of tau (PHF-tau), oligomeric-tau (Oligo-tau), hyperphosphorylated-tau (p-tau), and citrullinated-tau (Cit-tau), were stereologically analyzed by immunohistochemistry and Nanostring GeoMx digital spatial profiling, and correlated with clinical and neuropathological outcomes. Our data indicated significant increases in various AD-related pretangle tau isoforms, especially p-tau (AT8, 2.9-fold, pS396-tau, 2.6-fold), Cit-tau at arginine residue 209 (CitR209-tau; 4.1-fold), and Oligo-tau (T22+, 9.2-fold), as well as pretangle and mature tau tangle forms like MC-1-positive (1.8-fold) and PHF-tau (2.3-fold), in AD compared to control retinas. MCI retinas also exhibited substantial increases in Oligo-tau (5.2-fold), CitR209-tau (3.5-fold), and pS396-tau (2.2-fold). Nanostring GeoMx analysis confirmed elevated retinal p-tau at epitopes: Ser214 (2.3-fold), Ser396 (2.6-fold), Ser404 (2.4-fold), and Thr231 (1.8-fold), particularly in MCI patients. Strong associations were found between retinal tau isoforms versus brain pathology and cognitive status: a) retinal Oligo-tau vs. Braak stage, neurofibrillary tangles (NFTs), and CDR cognitive scores (ρ = 0.63-0.71), b) retinal PHF-tau vs. neuropil threads (NTs) and ABC scores (ρ = 0.69-0.71), and c) retinal pS396-tau vs. NTs, NFTs, and ABC scores (ρ = 0.67-0.74). Notably, retinal Oligo-tau strongly correlated with retinal Aß42 and arterial Aß40 forms (r = 0.76-0.86). Overall, this study identifies and quantifies diverse retinal tau isoforms in MCI and AD patients, underscoring their link to brain pathology and cognition. These findings advocate for further exploration of retinal tauopathy biomarkers to facilitate AD detection and monitoring via noninvasive retinal imaging.


Assuntos
Doença de Alzheimer , Isoformas de Proteínas , Retina , Proteínas tau , Humanos , Proteínas tau/metabolismo , Masculino , Feminino , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Retina/patologia , Retina/metabolismo , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo
2.
Diabetologia ; 66(10): 1943-1958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460827

RESUMO

AIMS/HYPOTHESIS: Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS: Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS: There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cß; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION: We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY: The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).


Assuntos
Diabetes Mellitus , MicroRNAs , Humanos , Repressão Epigenética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , RNA Interferente Pequeno/metabolismo , Cicatrização/genética , Células Epiteliais/metabolismo
3.
J Transl Med ; 21(1): 650, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743503

RESUMO

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Humanos , Animais , Ratos , Suínos , Porco Miniatura , Degeneração Retiniana/terapia , Neurônios , Instituições de Assistência Ambulatorial
4.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773106

RESUMO

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteômica , Retina/patologia , Atrofia/patologia , Biomarcadores/metabolismo
5.
Alzheimers Dement ; 19(11): 5185-5197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37166032

RESUMO

INTRODUCTION: Vascular amyloid beta (Aß) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS: TJ components and Aß expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS: Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aß40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION: We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aß40 deposition suggests a common pathogenic mechanism of failed Aß clearance via intramural periarterial drainage.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Retina , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/patologia , Claudina-5/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Retina/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia
6.
Exp Eye Res ; 204: 108455, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33485845

RESUMO

There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.


Assuntos
Doenças Autoimunes/epidemiologia , COVID-19/epidemiologia , Córnea/patologia , Doenças Autoimunes/diagnóstico , Comorbidade , Humanos , SARS-CoV-2
7.
Nanomedicine ; 32: 102332, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181273

RESUMO

Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.


Assuntos
Córnea/patologia , Diabetes Mellitus/patologia , Células Epiteliais/patologia , Nanopartículas/química , Polímeros/química , RNA/uso terapêutico , Células-Tronco/patologia , Cicatrização , Adenoviridae/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Cultivadas , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Oligonucleotídeos Antissenso/farmacologia , RNA/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
8.
Acta Neuropathol ; 139(5): 813-836, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32043162

RESUMO

Pericyte loss and deficient vascular platelet-derived growth factor receptor-ß (PDGFRß) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid ß-protein (Aß) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aß deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRß in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRß loss significantly associated with increased retinal vascular Aß40 and Aß42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRß and Aß40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aß burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRß loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.


Assuntos
Doença de Alzheimer/patologia , Amiloidose/patologia , Encéfalo/patologia , Pericitos/patologia , Retina/patologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/complicações , Barreira Hematoencefálica/patologia , Angiopatia Amiloide Cerebral/patologia , Cognição/fisiologia , Feminino , Humanos , Masculino
9.
Proteomics ; 19(3): e1800213, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30515959

RESUMO

Retinal degenerative diseases lead to blindness with few treatments. Various cell-based therapies are aimed to slow the progression of vision loss by preserving light-sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co-culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co-cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid-derived 2)-like 2 (NRF2) mediated oxidative response signaling as an hNPC-induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.


Assuntos
Células-Tronco Neurais/transplante , Células Fotorreceptoras/citologia , Degeneração Retiniana/terapia , Sobrevivência Celular , Células Cultivadas , Proteínas do Olho/análise , Humanos , Células-Tronco Neurais/citologia , Células Fotorreceptoras/patologia , Proteômica , Degeneração Retiniana/patologia
10.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30282707

RESUMO

Recently, we reported that the herpesvirus entry mediator (HVEM; also called TNFRSF14 or CD270) is upregulated by the latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1) and that the absence of HVEM affects latency reactivation but not primary infection in ocularly infected mice. gD has been shown to bind to HVEM. LIGHT (TNFSF14), CD160, and BTLA (B- and T-lymphocyte attenuator) also interact with HVEM and can interfere with HSV gD binding. It was not known if LIGHT, CD160, or BTLA affected the level of latency reactivation in the trigeminal ganglia (TG) of latently infected mice. To address this issue, we ocularly infected LIGHT-/-, CD160-/-, and BTLA-/- mice with LAT(+) and LAT(-) viruses, using similarly infected wild-type (WT) and HVEM-/- mice as controls. The amount of latency, as determined by the levels of gB DNA in the TG of the LIGHT-/-, CD160-/-, and BTLA-/- mice infected with either LAT(+) or LAT(-) viruses, was lower than that in WT mice infected with LAT(+) virus and was similar in WT mice infected with LAT(-) virus. The levels of LAT RNA in HVEM-/-, LIGHT-/-, CD160-/-, and BTLA-/- mice infected with LAT(+) virus were similar and were lower than the levels of LAT RNA in WT mice. However, LIGHT-/-, CD160-/-, and BTLA-/- mice, independent of the presence of LAT, had levels of reactivation similar to those of WT mice infected with LAT(+) virus. Faster reactivation correlated with the upregulation of HVEM transcript. The LIGHT-/-, CD160-/-, and BTLA-/- mice had higher levels of HVEM expression, and this, along with the absence of BTLA, LIGHT, or CD160, may contribute to faster reactivation, while the absence of each molecule, independent of LAT, may have contributed to lower latency. This study suggests that, in the absence of competition with gD for binding to HVEM, LAT RNA is important for WT levels of latency but not for WT levels of reactivation.IMPORTANCE The effects of BTLA, LIGHT, and CD160 on latency reactivation are not known. We show here that in BTLA, LIGHT, or CD160 null mice, latency is reduced; however, HVEM expression is upregulated compared to that of WT mice, and this upregulation is associated with higher reactivation that is independent of LAT but dependent on gD expression. Thus, one of the mechanisms by which BTLA, LIGHT, and CD160 null mice enhance reactivation appears to be the increased expression of HVEM in the presence of gD. Thus, our results suggest that blockade of HVEM-LIGHT-BTLA-CD160 contributes to reduced HSV-1 latency and reactivation.


Assuntos
Antígenos CD/genética , Oftalmopatias/virologia , Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , MicroRNAs/genética , Receptores Imunológicos/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Animais , Oftalmopatias/genética , Feminino , Proteínas Ligadas por GPI/genética , Técnicas de Inativação de Genes , Herpes Simples/virologia , Cinética , Masculino , Camundongos , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus , Latência Viral , Replicação Viral
11.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187538

RESUMO

UL20, an essential herpes simplex virus 1 (HSV-1) protein, is involved in cytoplasmic envelopment of virions and virus egress. We reported recently that UL20 can bind to a host protein encoded by the zinc finger DHHC-type containing 3 (ZDHHC3) gene (also known as Golgi-specific DHHC zinc finger protein [GODZ]). Here, we show for the first time that HSV-1 replication is compromised in murine embryonic fibroblasts (MEFs) isolated from GODZ-/- mice. The absence of GODZ resulted in blocking palmitoylation of UL20 and altered localization and expression of UL20 and glycoprotein K (gK); the expression of gB and gC; and the localization and expression of tegument and capsid proteins within HSV-1-infected MEFs. Electron microscopy revealed that the absence of GODZ limited the maturation of virions at multiple steps and affected the localization of virus and endoplasmic reticulum morphology. Virus replication in the eyes of ocularly HSV-1-infected GODZ-/- mice was significantly lower than in HSV-1-infected wild-type (WT) mice. The levels of UL20, gK, and gB transcripts in the corneas of HSV-1-infected GODZ-/- mice on day 5 postinfection were markedly lower than in WT mice, whereas only UL20 transcripts were reduced in trigeminal ganglia (TG). In addition, HSV-1-infected GODZ-/- mice showed notably lower levels of corneal scarring, and HSV-1 latency reactivation was also reduced. Thus, normal HSV-1 infectivity and viral pathogenesis are critically dependent on GODZ-mediated palmitoylation of viral UL20.IMPORTANCE HSV-1 infection is widespread. Ocular infection can cause corneal blindness; however, approximately 70 to 90% of American adults exposed to the virus show no clinical symptoms. In this study, we show for the first time that the absence of a zinc finger protein called GODZ affects primary and latent infection, as well as reactivation, in ocularly infected mice. The reduced virus infectivity is due to the absence of the GODZ interaction with HSV-1 UL20. These results strongly suggest that binding of UL20 to GODZ promotes virus infectivity in vitro and viral pathogenesis in vivo.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral , Animais , Linhagem Celular , Córnea/virologia , Citoplasma/virologia , Feminino , Herpesvirus Humano 1/genética , Lipoilação , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Gânglio Trigeminal/virologia , Proteínas Virais/genética
12.
Stem Cells ; 35(10): 2105-2114, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28748596

RESUMO

Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.


Assuntos
Células-Tronco/metabolismo , Cicatrização/fisiologia , Humanos
13.
Mol Vis ; 21: 1357-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26788028

RESUMO

PURPOSE: To examine the expression of putative limbal epithelial stem cell (LESC) markers and wound healing rates in primary healthy and diabetic human limbal epithelial cells (LECs) cultured on different substrata. METHODS: Primary limbal epithelial cells were isolated from human autopsy corneas and discarded corneoscleral rims with dispase II treatment. LECs were cultured in EpiLife medium on human amniotic membrane (AM) denuded with mild alkali treatment, on plastic dishes and on glass slides coated with a mixture of human fibronectin, collagen type IV, and laminin (FCL). Cultured LECs were fixed in p-formaldehyde or methanol, and the expression of the putative LESC markers ΔNp63α, PAX6, and ABCG2 and keratins K12, K15, and K17 was examined with immunostaining. Wound healing was evaluated in scratch wound assay in LECs cultured on FCL-coated plates 20 h after wounding. RESULTS: LECs cultured on denuded AM expressed ΔNp63α, PAX6 (both showed nuclear staining), K15, K17 (cytoskeleton staining), and ABCG2 (cytoplasmic and/or plasma membrane staining). LECs cultured on FCL-coated slides also expressed these markers, whereas no expression was detected for differentiated corneal epithelial cell marker K12. Decreased expression of LESC markers was observed in diabetic LECs compared to healthy LECs cultured on the FCL-coated slides. This reduction was most prominent for K15 and K17. Diabetic LECs were found to heal scratch wounds slower than healthy cells in accordance with previous results in corneal organ cultures. CONCLUSIONS: Healthy human LECs cultured either on AM or FCL-coated slides preserved LESC marker expression. The observed reduction in LESC marker expression and slower wound healing in cultured diabetic LECs are in line with our earlier reports and may account for diabetic LESC dysfunction and clinically observed impaired corneal epithelial wound healing.


Assuntos
Complicações do Diabetes/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo , Cicatrização/fisiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Células Cultivadas , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Meios de Cultura , Complicações do Diabetes/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Feminino , Humanos , Limbo da Córnea/patologia , Masculino , Pessoa de Meia-Idade , Células-Tronco/patologia
14.
Exp Eye Res ; 129: 66-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446319

RESUMO

Overexpression of c-met and suppression of matrix metalloproteinase-10 (MMP-10) and cathepsin F genes was previously shown to normalize wound healing, epithelial and stem cell marker patterns in organ-cultured human diabetic corneas. We now examined if gene therapy of limbal cells only would produce similar effects. Eight pairs of organ-cultured autopsy human diabetic corneas were used. One cornea of each pair was treated for 48 h with adenoviruses (Ad) harboring full-length c-met mRNA or a mixture (combo) of Ad with c-met and shRNA to MMP-10 and cathepsin F genes. Medium was kept at the limbal level to avoid transduction of central corneal epithelium. Fellow corneas received control Ad with EGFP gene. After additional 5 (c-met) or 10 days (combo) incubation, central corneal epithelial debridement with n-heptanol was performed, and wound healing times were determined microscopically. Corneal cryostat sections were immunostained for diabetic and putative limbal stem cell markers, α3ß1 integrin, nidogen-1, fibronectin, laminin γ3 chain, ΔNp63α, keratins 14, 15, and 17, as well as for activated signaling intermediates, phosphorylated EGFR, Akt, and p38. Limbal c-met overexpression significantly accelerated healing of 8.5-mm epithelial wounds over EGFP controls (6.3 days vs. 9.5 days, p < 0.02). Combo treatment produced a similar result (6.75 days vs. 13.5 days, p < 0.03). Increased immunostaining vs. EGFP controls for most markers and signaling intermediates accompanied c-met gene or combo transduction. Gene therapy of limbal epithelial stem cell compartment has a beneficial effect on the diabetic corneal wound healing and on diabetic and stem cell marker expression, and shows potential for alleviating symptoms of diabetic keratopathy.


Assuntos
Biomarcadores/metabolismo , Doenças da Córnea/terapia , Diabetes Mellitus/terapia , Terapia Genética/métodos , Limbo da Córnea/citologia , Células-Tronco/citologia , Cicatrização/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doenças da Córnea/etiologia , Doenças da Córnea/patologia , Diabetes Mellitus/patologia , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Feminino , Humanos , Limbo da Córnea/metabolismo , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Transdução de Sinais , Células-Tronco/metabolismo
15.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405854

RESUMO

Importance: This study identifies and quantifies diverse pathological tau isoforms in the retina of both early and advanced-stage Alzheimer's disease (AD) and determines their relationship with disease status. Objective: A case-control study was conducted to investigate the accumulation of retinal neurofibrillary tangles (NFTs), paired helical filament (PHF)-tau, oligomeric tau (oligo-tau), hyperphosphorylated tau (p-tau), and citrullinated tau (Cit-tau) in relation to the respective brain pathology and cognitive dysfunction in mild cognitively impaired (MCI) and AD dementia patients versus normal cognition (NC) controls. Design setting and participants: Eyes and brains from donors diagnosed with AD, MCI (due to AD), and NC were collected (n=75 in total), along with clinical and neuropathological data. Brain and retinal cross-sections-in predefined superior-temporal and inferior-temporal (ST/IT) subregions-were subjected to histopathology analysis or Nanostring GeoMx digital spatial profiling. Main outcomes and measure: Retinal burden of NFTs (pretangles and mature tangles), PHF-tau, p-tau, oligo-tau, and Cit-tau was assessed in MCI and AD versus NC retinas. Pairwise correlations revealed associations between retinal and brain parameters and cognitive status. Results: Increased retinal NFTs (1.8-fold, p=0.0494), PHF-tau (2.3-fold, p<0.0001), oligo-tau (9.1-fold, p<0.0001), CitR 209 -tau (4.3-fold, p<0.0001), pSer202/Thr205-tau (AT8; 4.1-fold, p<0.0001), and pSer396-tau (2.8-fold, p=0.0015) were detected in AD patients. Retinas from MCI patients showed significant increases in NFTs (2.0-fold, p=0.0444), CitR 209 -tau (3.5-fold, p=0.0201), pSer396-tau (2.6-fold, p=0.0409), and, moreover, oligo-tau (5.8-fold, p=0.0045). Nanostring GeoMx quantification demonstrated upregulated retinal p-tau levels in MCI patients at phosphorylation sites of Ser214 (2.3-fold, p=0.0060), Ser396 (1.8-fold, p=0.0052), Ser404 (2.4-fold, p=0.0018), and Thr231 (3.3-fold, p=0.0028). Strong correlations were found between retinal tau forms to paired-brain pathology and cognitive status: a) retinal oligo-tau vs. Braak stage (r=0.60, P=0.0002), b) retinal PHF-tau vs. ABC average score (r=0.64, P=0.0043), c) retinal pSer396-tau vs. brain NFTs (r=0.68, P<0.0001), and d) retinal pSer202/Thr205-tau vs. MMSE scores (r= -0.77, P=0.0089). Conclusions and Relevance: This study reveals increases in immature and mature retinal tau isoforms in MCI and AD patients, highlighting their relationship with brain pathology and cognition. The data provide strong incentive to further explore retinal tauopathy markers that may be useful for early detection and monitoring of AD staging through noninvasive retinal imaging.

17.
Proc Natl Acad Sci U S A ; 107(42): 18143-8, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921419

RESUMO

Effective treatment of brain neurological disorders such as Alzheimer's disease, multiple sclerosis, or tumors should be possible with drug delivery through blood-brain barrier (BBB) or blood-brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Malatos/uso terapêutico , Nanopartículas , Polímeros/uso terapêutico , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/patologia , Endossomos/metabolismo , Infusões Intravenosas , Malatos/administração & dosagem , Malatos/farmacocinética , Camundongos , Camundongos Nus , Polímeros/administração & dosagem , Polímeros/farmacocinética
18.
Prog Retin Eye Res ; 95: 101149, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36443219

RESUMO

Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (ß-catenin-dependent) or non-canonical (ß-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.


Assuntos
Via de Sinalização Wnt , beta Catenina , Humanos , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Túnica Conjuntiva/metabolismo , Diferenciação Celular , Malha Trabecular
19.
Cells ; 12(21)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947602

RESUMO

Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos' cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state.


Assuntos
Diabetes Mellitus , Exossomos , Limbo da Córnea , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Limbo da Córnea/metabolismo , Córnea , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Células Estromais , Comunicação Celular
20.
Curr Gene Ther ; 22(2): 104-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33902406

RESUMO

This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye, including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems, including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments, including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.


Assuntos
Segmento Anterior do Olho , Córnea , Animais , Edição de Genes , Técnicas de Transferência de Genes , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA