Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JAMA ; 312(8): 817-24, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25157725

RESUMO

IMPORTANCE: Premature infants are at risk of developing encephalopathy of prematurity, which is associated with long-term neurodevelopmental delay. Erythropoietin was shown to be neuroprotective in experimental and retrospective clinical studies. OBJECTIVE: To determine if there is an association between early high-dose recombinant human erythropoietin treatment in preterm infants and biomarkers of encephalopathy of prematurity on magnetic resonance imaging (MRI) at term-equivalent age. DESIGN, SETTING, AND PARTICIPANTS: A total of 495 infants were included in a randomized, double-blind, placebo-controlled study conducted in Switzerland between 2005 and 2012. In a nonrandomized subset of 165 infants (n=77 erythropoietin; n=88 placebo), brain abnormalities were evaluated on MRI acquired at term-equivalent age. INTERVENTIONS: Participants were randomly assigned to receive recombinant human erythropoietin (3000 IU/kg; n=256) or placebo (n=239) intravenously before 3 hours, at 12 to 18 hours, and at 36 to 42 hours after birth. MAIN OUTCOMES AND MEASURES: The primary outcome of the trial, neurodevelopment at 24 months, has not yet been assessed. The secondary outcome, white matter disease of the preterm infant, was semiquantitatively assessed from MRI at term-equivalent age based on an established scoring method. The resulting white matter injury and gray matter injury scores were categorized as normal or abnormal according to thresholds established in the literature by correlation with neurodevelopmental outcome. RESULTS: At term-equivalent age, compared with untreated controls, fewer infants treated with recombinant human erythropoietin had abnormal scores for white matter injury (22% [17/77] vs 36% [32/88]; adjusted risk ratio [RR], 0.58; 95% CI, 0.35-0.96), white matter signal intensity (3% [2/77] vs 11% [10/88]; adjusted RR, 0.20; 95% CI, 0.05-0.90), periventricular white matter loss (18% [14/77] vs 33% [29/88]; adjusted RR, 0.53; 95% CI, 0.30-0.92), and gray matter injury (7% [5/77] vs 19% [17/88]; adjusted RR, 0.34; 95% CI, 0.13-0.89). CONCLUSIONS AND RELEVANCE: In an analysis of secondary outcomes of a randomized clinical trial of preterm infants, high-dose erythropoietin treatment within 42 hours after birth was associated with a reduced risk of brain injury on MRI. These findings require assessment in a randomized trial designed primarily to assess this outcome as well as investigation of the association with neurodevelopmental outcomes. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00413946.


Assuntos
Encefalopatias/prevenção & controle , Eritropoetina/administração & dosagem , Recém-Nascido Prematuro , Fármacos Neuroprotetores/administração & dosagem , Retinopatia da Prematuridade/prevenção & controle , Encéfalo/patologia , Método Duplo-Cego , Epoetina alfa , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Proteínas Recombinantes/administração & dosagem
2.
Front Pharmacol ; 13: 919630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903331

RESUMO

Cannabis is one of the most widely used illicit drugs during pregnancy and lactation. With the recent legalization of cannabis in many countries, health professionals are increasingly exposed to pregnant and breastfeeding women who are consuming cannabis on a regular basis as a solution for depression, anxiety, nausea, and pain. Cannabis consumption during pregnancy can induce negative birth outcomes such as reduced birth weight and increased risk of prematurity and admission to the neonatal intensive care unit. Yet, limited information is available regarding the pharmacokinetics of cannabis in the fetus and newborn exposed during pregnancy and lactation. Indeed, the official recommendations regarding the use of cannabis during these two critical development periods lack robust pharmacokinetics data and make it difficult for health professionals to guide their patients. Many clinical studies are currently evaluating the effects of cannabis on the brain development and base their groups mostly on questionnaires. These studies should be associated with pharmacokinetics studies to assess correlations between the infant brain development and the exposure to cannabis during pregnancy and breastfeeding. Our project aims to review the available data on the pharmacokinetics of cannabinoids in adults, neonates, and animals. If the available literature is abundant in adult humans and animals, there is still a lack of published data on the exposure of pregnant and lactating women and neonates. However, some of the published information causes concerns on the exposure and the potential effects of cannabis on fetuses and neonates. The safety of cannabis use for non-medical purpose during pregnancy and breastfeeding needs to be further characterized with proper pharmacokinetic studies in humans feasible in regions where cannabis has been legalized. Given the available data, significant transfer occurs to the fetus and the breastfed newborn with a theoretical risk of accumulation of products known to be biologically active.

3.
Front Neuroinform ; 16: 843114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784189

RESUMO

Resting state functional MRI (rsfMRI) has been shown to be a promising tool to study intrinsic brain functional connectivity and assess its integrity in cerebral development. In neonates, where functional MRI is limited to very few paradigms, rsfMRI was shown to be a relevant tool to explore regional interactions of brain networks. However, to identify the resting state networks, data needs to be carefully processed to reduce artifacts compromising the interpretation of results. Because of the non-collaborative nature of the neonates, the differences in brain size and the reversed contrast compared to adults due to myelination, neonates can't be processed with the existing adult pipelines, as they are not adapted. Therefore, we developed NeoRS, a rsfMRI pipeline for neonates. The pipeline relies on popular neuroimaging tools (FSL, AFNI, and SPM) and is optimized for the neonatal brain. The main processing steps include image registration to an atlas, skull stripping, tissue segmentation, slice timing and head motion correction and regression of confounds which compromise functional data interpretation. To address the specificity of neonatal brain imaging, particular attention was given to registration including neonatal atlas type and parameters, such as brain size variations, and contrast differences compared to adults. Furthermore, head motion was scrutinized, and motion management optimized, as it is a major issue when processing neonatal rsfMRI data. The pipeline includes quality control using visual assessment checkpoints. To assess the effectiveness of NeoRS processing steps we used the neonatal data from the Baby Connectome Project dataset including a total of 10 neonates. NeoRS was designed to work on both multi-band and single-band acquisitions and is applicable on smaller datasets. NeoRS also includes popular functional connectivity analysis features such as seed-to-seed or seed-to-voxel correlations. Language, default mode, dorsal attention, visual, ventral attention, motor and fronto-parietal networks were evaluated. Topology found the different analyzed networks were in agreement with previously published studies in the neonate. NeoRS is coded in Matlab and allows parallel computing to reduce computational times; it is open-source and available on GitHub (https://github.com/venguix/NeoRS). NeoRS allows robust image processing of the neonatal rsfMRI data that can be readily customized to different datasets.

4.
PLoS One ; 17(4): e0264781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35427374

RESUMO

Congenital heart disease (CHD) has been associated with structural brain growth and long-term developmental impairments, including deficits in learning, memory, and executive functions. Altered functional connectivity has been shown to be altered in neonates born with CHD; however, it is unclear if these early life alterations are also present during adulthood. Therefore, this study aimed to compare resting state functional connectivity networks associated with executive function deficits between youth (16 to 24 years old) with complex CHD (mean age = 20.13; SD = 2.35) who underwent open-heart surgery during infancy and age- and sex-matched controls (mean age = 20.41; SD = 2.05). Using the Behavior Rating Inventory of Executive Function-Adult Version questionnaire, we found that participants with CHD presented with poorer performance on the inhibit, initiate, emotional control, working memory, self-monitor, and organization of materials clinical scales than healthy controls. We then compared the resting state networks theoretically corresponding to these impaired functions, namely the default mode, dorsal attention, fronto-parietal, fronto-orbital, and amygdalar networks, between the two groups. Participants with CHD presented with decreased functional connectivity between the fronto-orbital cortex and the hippocampal regions and between the amygdala and the frontal pole. Increased functional connectivity was observed within the default mode network, the dorsal attention network, and the fronto-parietal network. Overall, our results suggest that youth with CHD present with disrupted resting state functional connectivity in widespread networks and regions associated with altered executive functioning.


Assuntos
Cardiopatias Congênitas , Imageamento por Ressonância Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Função Executiva , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Vias Neurais , Adulto Jovem
5.
Eur J Paediatr Neurol ; 39: 11-18, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598572

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) without sedation may lead to discomfort, which may be associated with adverse consequences in neonates with hypoxic-ischemic encephalopathy (HIE). The aim of this study was to assess the association between level of exposure to opioids and temperature, with electroencephalography (EEG) background activity post-TH and magnetic resonance imaging (MRI) brain injury in neonates with HIE. METHODS: Thirty-one neonates with mild-to-moderate HIE who underwent TH were identified. MRIs were reviewed for presence of brain injury. Quantitative EEG background features including EEG discontinuity index and spectral power densities were calculated during rewarming and post-rewarming periods. Dose of opioids administered during TH and temperatures were collected from the medical charts. Multivariable linear and logistic regression analyses were conducted to assess the associations between cumulative dose of opioids and temperature with EEG background and MRI while adjusting for markers of HIE severity. RESULTS: Higher opioid doses (ß = -0.21, p = 0.02) and reduced skin temperature (ß = 0.14, p < 0.01) were associated with lower EEG discontinuity index recorded post-TH. Higher opioid doses (ß = 0.75, p = 0.01) and reduced skin temperature (ß = -0.39, p = 0.02) were also associated with higher EEG Delta power post-TH. MRI brain injury was observed in 14 patients (45%). In adjusted regression analyses, higher opioid doses (OR = 0.00; 95%CI: 0-0.19; p = 0.01), reduced skin temperature (OR = 41.19; 95%CI: 2.27-747.86; p = 0.01) and reduced cooling device output temperature (OR = 1.91; 95%CI: 1.05-3.48; p = 0.04) showed an association with lower odds of brain injury. CONCLUSIONS: Higher level of exposure to opioids and reduced skin temperature during TH in mild-to-moderate HIE were associated with improved EEG background activity post-TH. Moreover, higher exposure to opioids, reduced skin temperature and reduced device output temperature were associated with lower odds of brain injury on MRI.


Assuntos
Analgesia , Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Analgésicos Opioides/uso terapêutico , Lesões Encefálicas/complicações , Eletroencefalografia/métodos , Humanos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Temperatura
6.
Seizure ; 47: 13-16, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28282552

RESUMO

PURPOSE: Seizures are common in critically ill neonates. Both seizures and antiepileptic treatments may lead to short term complications and worsen the outcomes. Predicting the risks of seizure reoccurrence could enable individual treatment regimens and better outcomes. We aimed to identify EEG signatures of seizure reoccurrence by investigating periictal electrographic features and spectral power characteristics in hypothermic neonates with hypoxic-ischemic encephalopathy (HIE) with or without reoccurrence of seizures on rewarming. METHODS: We recruited five consecutive HIE neonates, submitted to continuous EEG monitoring, with high seizure burden (>20% per hour) while undergoing therapeutic hypothermia. Two of them had reoccurrence of seizures on rewarming. We performed quantitative analysis of fifteen artifact-free consecutive seizures to appreciate spectral power changes between the interictal, preictal and ictal periods, separately for each patient. Visual analysis allowed description of electrographic features associated with ictal events. RESULTS: Every patient demonstrated a significant increase in overall spectral power from the interictal to preictal and ictal periods (p<0.01). Alpha power increase was more pronounced in the two patients with reoccurrence of seizures on rewarming and significant when comparing both interictal-to-preictal and interictal-to-ictal periods. This alpha activity increase could be also appreciated using visual analysis and distinguished neonates with and without seizure reoccurrence. CONCLUSION: This distinct alpha activity preceding ictal onset could represent a biomarker of propensity for seizure reoccurrence in neonates. Future studies should be performed to confirm whether quantitative periictal characteristics and electrographic features allow predicting the risks of seizure reoccurrence in HIE neonates and other critically ill patients.


Assuntos
Encéfalo/fisiopatologia , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/terapia , Convulsões/fisiopatologia , Convulsões/terapia , Eletroencefalografia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico , Recém-Nascido , Masculino , Prognóstico , Estudos Retrospectivos , Convulsões/complicações , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA