Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Am Soc Nephrol ; 34(6): 1019-1038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36890646

RESUMO

SIGNIFICANCE STATEMENT: Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND: Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS: We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS: A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS: The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .


Assuntos
Proteínas Imediatamente Precoces , Potássio , Camundongos , Animais , Fosforilação , Potássio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio na Dieta , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Rim/metabolismo , Proteínas de Transporte/metabolismo , Camundongos Knockout , Transporte de Íons
2.
Pflugers Arch ; 475(5): 607-620, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977894

RESUMO

The intercalated cell Cl-/HCO3- exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function. The purpose of this study was therefore to determine if αENaC is expressed at the protein level in pendrin-positive intercalated cells and to determine if αENaC gene ablation or constitutively upregulating ENaC activity changes pendrin abundance, subcellular distribution, and/or function. We observed diffuse, cytoplasmic αENaC label in pendrin-positive intercalated cells from both mice and rats, with much lower label intensity in pendrin-negative, type A intercalated cells. However, while αENaC gene ablation within principal and intercalated cells of the CCD reduced Cl- absorption, it did not change pendrin abundance or subcellular distribution in aldosterone-treated mice. Further experiments used a mouse model of Liddle's syndrome to explore the effect of increasing ENaC channel activity on pendrin abundance and function. The Liddle's variant did not increase either total or apical plasma membrane pendrin abundance in aldosterone-treated or in NaCl-restricted mice. Similarly, while the Liddle's mutation increased total Cl- absorption in CCDs from aldosterone-treated mice, it did not significantly affect the change in Cl- absorption seen with pendrin gene ablation. We conclude that in rats and mice, αENaC localizes to pendrin-positive ICs where its physiological role remains to be determined. While pendrin modulates ENaC abundance, subcellular distribution, and function, ENaC does not have a similar effect on pendrin.


Assuntos
Aldosterona , Proteínas de Transporte de Ânions , Camundongos , Ratos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Aldosterona/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Pressão Sanguínea/fisiologia , Transportadores de Sulfato/genética
3.
Am J Physiol Renal Physiol ; 324(5): F446-F460, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892908

RESUMO

The thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. The function of the TAL depends on the activity of the bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), which is highly abundant in the luminal membrane of TAL cells. TAL function is regulated by various hormonal and nonhormonal factors. However, many of the underlying signal transduction pathways remain elusive. Here, we describe and characterize a novel gene-modified mouse model for an inducible and specific Cre/Lox-mediated gene modification in the TAL. In these mice, tamoxifen-dependent Cre (CreERT2) was inserted into the 3'-untranslated region of the Slc12a1 gene, which encodes NKCC2 (Slc12a1-CreERT2). Although this gene modification strategy slightly reduced endogenous NKCC2 expression at the mRNA and protein levels, the lowered NKCC2 abundance was not associated with altered urinary fluid and ion excretion, urinary concentration, and the renal response to loop diuretics. Immunohistochemistry on kidneys from Slc12a1-CreERT2 mice revealed strong Cre expression exclusively in TAL cells but not in any other nephron portion. Cross-breeding of these mice with the mT/mG reporter mouse line showed a very low recombination rate (∼0% in male mice and <3% in female mice) at baseline but complete (∼100%) recombination after repeated tamoxifen administration in male and female mice. The achieved recombination encompassed the entire TAL and also included the macula densa. Thus, the new Slc12a1-CreERT2 mouse line allows inducible and very efficient gene targeting in the TAL and hence promises to be a powerful tool to advance our understanding of the regulation of TAL function.NEW & NOTEWORTHY The renal thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. However, the underlying molecular mechanisms that regulate TAL function are incompletely understood. This study describes a novel transgenic mouse model (Slc12a1-creERT2) for inducible and highly efficient gene targeting in the TAL that promises to ease physiological studies on the functional role of candidate regulatory genes.


Assuntos
Rim , Simportadores de Cloreto de Sódio-Potássio , Feminino , Camundongos , Masculino , Animais , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Rim/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sódio/metabolismo , Modelos Animais de Doenças
4.
Pflugers Arch ; 473(1): 79-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200256

RESUMO

The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Túbulos Renais Distais/citologia , Magnésio/metabolismo , Camundongos , Potássio/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Proteínas Supressoras de Tumor/genética
5.
Kidney Int ; 100(4): 850-869, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252449

RESUMO

Adverse effects of calcineurin inhibitors (CNI), such as hypertension, hyperkalemia, acidosis, hypomagnesemia and hypercalciuria, have been linked to dysfunction of the distal convoluted tubule (DCT). To test this, we generated a mouse model with an inducible DCT-specific deletion of the calcineurin regulatory subunit B alpha (CnB1-KO). Three weeks after CnB1 deletion, these mice exhibited hypomagnesemia and acidosis, but no hypertension, hyperkalemia or hypercalciuria. Consistent with the hypomagnesemia, CnB1-KO mice showed a downregulation of proteins implicated in DCT magnesium transport, including TRPM6, CNNM2, SLC41A3 and parvalbumin but expression of calcium channel TRPV5 in the kidney was unchanged. The abundance of the chloride/bicarbonate exchanger pendrin was increased, likely explaining the acidosis. Plasma aldosterone levels, kidney renin expression, abundance of phosphorylated sodium chloride-cotransporter and abundance of the epithelial sodium channel were similar in control and CnB1-KO mice, consistent with a normal sodium balance. Long-term potassium homeostasis was maintained in CnB1-KO mice, but in-vivo and ex-vivo experiments indicated that CnB1 contributes to acute regulation of potassium balance and sodium chloride-cotransporter. Tacrolimus treatment of control and CnB1-KO mice demonstrated that CNI-related hypomagnesemia is linked to impaired calcineurin-signaling in DCT, while hypocalciuria and hyponatremia occur independently of CnB1 in DCT. Transcriptome and proteome analyses of isolated DCTs demonstrated that CnB1 deletion impacts the expression of several DCT-specific proteins and signaling pathways. Thus, our data support a critical role of calcineurin for DCT function and provide novel insights into the pathophysiology of CNI side effects and involved molecular players in the DCT.


Assuntos
Acidose , Magnésio , Animais , Calcineurina/genética , Túbulos Renais Distais , Camundongos , Proteoma/genética , Transcriptoma
6.
J Am Soc Nephrol ; 30(5): 737-750, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902838

RESUMO

BACKGROUND: A number of cAMP-elevating hormones stimulate phosphorylation (and hence activity) of the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). Evidence suggests that protein phosphatase 1 (PP1) and other protein phosphatases modulate NCC phosphorylation, but little is known about PP1's role and the mechanism regulating its function in the DCT. METHODS: We used ex vivo mouse kidney preparations to test whether a DCT-enriched inhibitor of PP1, protein phosphatase 1 inhibitor-1 (I1), mediates cAMP's effects on NCC, and conducted yeast two-hybrid and coimmunoprecipitation experiments in NCC-expressing MDCK cells to explore protein interactions. RESULTS: Treating isolated DCTs with forskolin and IBMX increased NCC phosphorylation via a protein kinase A (PKA)-dependent pathway. Ex vivo incubation of mouse kidney slices with isoproterenol, norepinephrine, and parathyroid hormone similarly increased NCC phosphorylation. The cAMP-induced stimulation of NCC phosphorylation strongly correlated with the phosphorylation of I1 at its PKA consensus phosphorylation site (a threonine residue in position 35). We also found an interaction between NCC and the I1-target PP1. Moreover, PP1 dephosphorylated NCC in vitro, and the PP1 inhibitor calyculin A increased NCC phosphorylation. Studies in kidney slices and isolated perfused kidneys of control and I1-KO mice demonstrated that I1 participates in the cAMP-induced stimulation of NCC. CONCLUSIONS: Our data suggest a complete signal transduction pathway by which cAMP increases NCC phosphorylation via a PKA-dependent phosphorylation of I1 and subsequent inhibition of PP1. This pathway might be relevant for the physiologic regulation of renal sodium handling by cAMP-elevating hormones, and may contribute to salt-sensitive hypertension in patients with endocrine disorders or sympathetic hyperactivity.


Assuntos
Transporte Biológico/efeitos dos fármacos , Colforsina/farmacologia , Túbulos Renais Distais/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas/farmacologia , Análise de Variância , Animais , Transporte Biológico/genética , Humanos , Immunoblotting , Técnicas In Vitro , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
7.
J Am Soc Nephrol ; 29(3): 977-990, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371419

RESUMO

The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the αENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of αENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa+)/low potassium (LK+) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γENaC subunit in the PHA-I phenotype. Nephron-specific γENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking αENaC or ßΕΝaC, an HNa+/LK+ diet did not normalize plasma potassium (K+) concentration or increase NCC activation. However, when K+ was eliminated from the diet at the time that γENaC was deleted, plasma K+ concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced ßENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K+ concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na+ balance in γENaC-deficient mice.


Assuntos
Canais Epiteliais de Sódio/genética , Hiperpotassemia/genética , Potássio/sangue , Pseudo-Hipoaldosteronismo/sangue , Pseudo-Hipoaldosteronismo/genética , Animais , Quelantes/uso terapêutico , Suplementos Nutricionais , Hiperpotassemia/sangue , Hiperpotassemia/tratamento farmacológico , Camundongos , Camundongos Knockout , Néfrons , Poliestirenos/uso terapêutico , Potássio na Dieta/administração & dosagem , Sódio na Dieta/administração & dosagem , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
8.
Pflugers Arch ; 469(7-8): 859-867, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656378

RESUMO

Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.


Assuntos
Sequência Conservada , Túbulos Renais Distais/metabolismo , Transcriptoma , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Evolução Molecular , Camundongos , Receptores de Droga/genética , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Pflugers Arch ; 469(10): 1387-1399, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28567665

RESUMO

In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa+/LK+) diet. In the present study, we addressed whether renal ßENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1bPax8/LC1) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1aPax8/LC1 mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na+/Cl- co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1bPax8/LC1 mice survived with a HNa+/LK+ diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK+ diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa+/standard-K+ diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K+ intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the ßENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity.


Assuntos
Dieta Hipossódica , Canais Epiteliais de Sódio/metabolismo , Hiperpotassemia/metabolismo , Potássio/metabolismo , Animais , Rim/metabolismo , Camundongos Transgênicos , Néfrons/metabolismo , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio/metabolismo
10.
J Am Soc Nephrol ; 27(8): 2309-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26701978

RESUMO

Systemic pseudohypoaldosteronism type 1 (PHA-1) is a severe salt-losing syndrome caused by loss-of-function mutations of the amiloride-sensitive epithelial sodium channel (ENaC) and characterized by neonatal life-threatening hypovolemia and hyperkalemia. The very high plasma aldosterone levels detected under hypovolemic or hyperkalemic challenge can lead to increased or decreased sodium reabsorption, respectively, through the Na(+)/Cl(-) cotransporter (NCC). However, the role of ENaC deficiency remains incompletely defined, because constitutive inactivation of individual ENaC subunits is neonatally lethal in mice. We generated adult inducible nephron-specific αENaC-knockout mice (Scnn1a(Pax8/LC1)) that exhibit hyperkalemia and body weight loss when kept on a regular-salt diet, thus mimicking PHA-1. Compared with control mice fed a regular-salt diet, knockout mice fed a regular-salt diet exhibited downregulated expression and phosphorylation of NCC protein, despite high plasma aldosterone levels. In knockout mice fed a high-sodium and reduced-potassium diet (rescue diet), although plasma aldosterone levels remained significantly increased, NCC expression returned to control levels, and body weight, plasma and urinary electrolyte concentrations, and excretion normalized. Finally, shift to a regular diet after the rescue diet reinstated the symptoms of severe PHA-1 syndrome and significantly reduced NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the nephron cannot be compensated for by other sodium channels and/or transporters, only by a high-sodium and reduced-potassium diet. We further conclude that hyperkalemia becomes the determining factor in regulating NCC activity, regardless of sodium loss, in the ENaC-mediated salt-losing PHA-1 phenotype.


Assuntos
Canais Epiteliais de Sódio/genética , Hiperpotassemia/genética , Pseudo-Hipoaldosteronismo/genética , Animais , Camundongos , Camundongos Knockout , Néfrons , Índice de Gravidade de Doença
11.
J Physiol ; 594(21): 6319-6331, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27457700

RESUMO

KEY POINTS: High dietary potassium (K+ ) intake dephosphorylates and inactivates the NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Using several ex vivo models, we show that physiological changes in extracellular K+ , similar to those occurring after a K+ rich diet, are sufficient to promote a very rapid dephosphorylation of NCC in native DCT cells. Although the increase of NCC phosphorylation upon decreased extracellular K+ appears to depend on cellular Cl- fluxes, the rapid NCC dephosphorylation in response to increased extracellular K+ is not Cl- -dependent. The Cl- -dependent pathway involves the SPAK/OSR1 kinases, whereas the Cl- independent pathway may include additional signalling cascades. ABSTRACT: A high dietary potassium (K+ ) intake causes a rapid dephosphorylation, and hence inactivation, of the thiazide-sensitive NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Based on experiments in heterologous expression systems, it was proposed that changes in extracellular K+ concentration ([K+ ]ex ) modulate NCC phosphorylation via a Cl- -dependent modulation of the with no lysine (K) kinases (WNK)-STE20/SPS-1-44 related proline-alanine-rich protein kinase (SPAK)/oxidative stress-related kinase (OSR1) kinase pathway. We used the isolated perfused mouse kidney technique and ex vivo preparations of mouse kidney slices to test the physiological relevance of this model on native DCT. We demonstrate that NCC phosphorylation inversely correlates with [K+ ]ex , with the most prominent effects occurring around physiological plasma [K+ ]. Cellular Cl- conductances and the kinases SPAK/OSR1 are involved in the phosphorylation of NCC under low [K+ ]ex . However, NCC dephosphorylation triggered by high [K+ ]ex is neither blocked by removing extracellular Cl- , nor by the Cl- channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid. The response to [K+ ]ex on a low extracellular chloride concentration is also independent of significant changes in SPAK/OSR1 phosphorylation. Thus, in the native DCT, [K+ ]ex directly and rapidly controls NCC phosphorylation by Cl- -dependent and independent pathways that involve the kinases SPAK/OSR1 and a yet unidentified additional signalling mechanism.


Assuntos
Cloretos/metabolismo , Túbulos Renais Distais/metabolismo , Potássio/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Canais de Cloreto/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Potássio/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Transcrição/metabolismo
12.
Pflugers Arch ; 468(5): 895-908, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762397

RESUMO

Aldosterone is the main mineralocorticoid hormone controlling sodium balance, fluid homeostasis, and blood pressure by regulating sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN). Germline loss-of-function mutations of the mineralocorticoid receptor (MR) in humans and in mice lead to the "renal" form of type 1 pseudohypoaldosteronism (PHA-1), a case of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia, and metabolic acidosis. To investigate the importance of MR in adult epithelial cells, we generated nephron-specific MR knockout mice (MR(Pax8/LC1)) using a doxycycline-inducible system. Under standard diet, MR(Pax8/LC1) mice exhibit inability to gain weight and significant weight loss compared to control mice. Interestingly, despite failure to thrive, MR(Pax8/LC1) mice survive but develop a severe PHA-1 phenotype with higher urinary Na(+) levels, decreased plasma Na(+), hyperkalemia, and higher levels of plasma aldosterone. This phenotype further worsens and becomes lethal under a sodium-deficient diet. Na(+)/Cl(-) co-transporter (NCC) protein expression and its phosphorylated form are downregulated in the MR(Pax8/LC1) knockouts, as well as the αENaC protein expression level, whereas the expression of glucocorticoid receptor (GR) is increased. A diet rich in Na(+) and low in K(+) does not restore plasma aldosterone to control levels but is sufficient to restore body weight, plasma, and urinary electrolytes. In conclusion, MR deletion along the nephron fully recapitulates the features of severe human PHA-1. ENaC protein expression is dependent on MR activity. Suppression of NCC under hyperkalemia predominates in a hypovolemic state.


Assuntos
Néfrons/metabolismo , Fenótipo , Pseudo-Hipoaldosteronismo/metabolismo , Receptores de Mineralocorticoides/deficiência , Aldosterona/sangue , Animais , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Camundongos , Potássio/sangue , Potássio/urina , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sódio/sangue , Sódio/urina , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Redução de Peso
13.
J Am Soc Nephrol ; 26(2): 425-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25071088

RESUMO

Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted.


Assuntos
Citocromo P-450 CYP11B2/deficiência , Homeostase/fisiologia , Hipoaldosteronismo/metabolismo , Rim/metabolismo , Potássio/metabolismo , Angiotensina II/metabolismo , Animais , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Modelos Animais de Doenças , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Hipoaldosteronismo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Potássio na Dieta/farmacologia
14.
Pflugers Arch ; 467(12): 2529-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055235

RESUMO

Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.


Assuntos
Ductos Biliares/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cirrose Hepática Experimental/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Aldosterona/sangue , Animais , Canais Epiteliais de Sódio/genética , Camundongos , Potássio/urina , Sódio/urina
15.
Am J Physiol Renal Physiol ; 309(9): F779-90, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26336159

RESUMO

The Rab GTPase-activating protein TBC1D4 (AS160) controls trafficking of the glucose transporter GLUT4 in adipocytes and skeletal muscle cells. TBC1D4 is also highly abundant in the renal distal tubule, although its role in this tubule is so far unknown. In vitro studies suggest that it is involved in the regulation of renal transporters and channels such as the epithelial sodium channel (ENaC), aquaporin-2 (AQP2), and the Na+-K+-ATPase. To assess the physiological role of TBC1D4 in the kidney, wild-type (TBC1D4+/+) and TBC1D4-deficient (TBC1D4-/-) mice were studied. Unexpectedly, neither under standard nor under challenging conditions (low Na+/high K+, water restriction) did TBC1D4-/- mice show any difference in urinary Na+ and K+ excretion, urine osmolarity, plasma ion and aldosterone levels, and blood pressure compared with TBC1D4+/+ mice. Also, immunoblotting did not reveal any change in the abundance of major renal sodium- and water-transporting proteins [Na-K-2Cl cotransporter (NKCC2) NKCC2, NaCl cotransporter (NCC), ENaC, AQP2, and the Na+-K+-ATPase]. However, the abundance of GLUT4, which colocalizes with TBC1D4 along the distal nephron of TBC1D4+/+ mice, was lower in whole kidney lysates of TBC1D4-/- mice than in TBC1D4+/+ mice. Likewise, primary thick ascending limb (TAL) cells isolated from TBC1D4-/- mice showed an increased basal glucose uptake and an abrogated insulin response compared with TAL cells from TBC1D4+/+ mice. Thus, TBC1D4 is dispensable for the regulation of renal Na+ and water transport, but may play a role for GLUT4-mediated basolateral glucose uptake in distal tubules. The latter may contribute to the known anaerobic glycolytic capacity of distal tubules during renal ischemia.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Rim/metabolismo , Sódio/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Células Cultivadas , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insulina/farmacologia , Rim/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Alça do Néfron/metabolismo , Masculino , Camundongos Knockout , Parvalbuminas/genética , Fenótipo , Regiões Promotoras Genéticas , Sistema Renina-Angiotensina
16.
J Am Soc Nephrol ; 25(3): 511-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24231659

RESUMO

The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.


Assuntos
Hipotensão/enzimologia , Túbulos Renais Distais/enzimologia , Proteínas/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Pressão Sanguínea , Feminino , Humanos , Alça do Néfron/enzimologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato , Regulação para Cima , Xenopus
17.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38573585

RESUMO

Klotho plays a critical role in the regulation of ion and fluid homeostasis. A previous study reported that haplo-insufficiency of Klotho in mice results in increased aldosterone synthase (CYP11B2) expression, elevated plasma aldosterone, and high blood pressure. This phenotype was presumed to be the result of diminished Klotho expression in zona glomerulosa (zG) cells of the adrenal cortex; however, systemic effects on adrenal aldosterone production could not be ruled out. To examine whether Klotho expressed in the zG is indeed a critical regulator of aldosterone synthesis, we generated a tamoxifen-inducible, zG-specific mouse model of Klotho deficiency by crossing Klotho-flox mice with Cyp11b2-CreERT mice (zG-Kl-KO). Tamoxifen-treated Cyp11b2-CreERT animals (zG-Cre) served as controls. Rosa26-mTmG reporter mice were used for Cre-dependent lineage-marking. Two weeks after tamoxifen induction, the specificity of the zG-Cre line was verified using immunofluorescence analysis to show that GFP expression was restricted to the zG. RNA in situ hybridization revealed a 65% downregulation of Klotho messenger RNA expression in the zG of zG-Kl-KO female mice at age 12 weeks compared to control mice. Despite this significant decrease, zG-Kl-KO mice exhibited no difference in plasma aldosterone levels. However, adrenal CYP11B2 expression and the CYP11B2 promotor regulatory transcription factors, NGFIB and Nurr1, were enhanced. Together with in vitro experiments, these results suggest that zG-derived Klotho modulates Cyp11b2 but does not evoke a systemic phenotype in young adult mice on a normal diet. Further studies are required to investigate the role of adrenal Klotho on aldosterone synthesis in aged animals.


Assuntos
Córtex Suprarrenal , Hiperaldosteronismo , Feminino , Camundongos , Animais , Zona Glomerulosa/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo , Hiperaldosteronismo/genética , Tamoxifeno/farmacologia
18.
Kidney Int ; 83(5): 811-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23447069

RESUMO

A dietary potassium load induces a rapid kaliuresis and natriuresis, which may occur even before plasma potassium and aldosterone (aldo) levels increase. Here we sought to gain insight into underlying molecular mechanisms contributing to this response. After gastric gavage of 2% potassium, the plasma potassium concentrations rose rapidly (0.25 h), followed by a significant rise of plasma aldo (0.5 h) in mice. Enhanced urinary potassium and sodium excretion was detectable as early as spot urines could be collected (about 0.5 h). The functional changes were accompanied by a rapid and sustained (0.25-6 h) dephosphorylation of the NaCl cotransporter (NCC) and a late (6 h) upregulation of proteolytically activated epithelial sodium channels. The rapid effects on NCC were independent from the coadministered anion. NCC dephosphorylation was also aldo-independent, as indicated by experiments in aldo-deficient mice. The observed urinary sodium loss relates to NCC, as it was markedly diminished in NCC-deficient mice. Thus, downregulation of NCC likely explains the natriuretic effect of an acute oral potassium load in mice. This may improve renal potassium excretion by increasing the amount of intraluminal sodium that can be exchanged against potassium in the aldo-sensitive distal nephron.


Assuntos
Rim/metabolismo , Potássio na Dieta/sangue , Receptores de Droga/metabolismo , Simportadores/metabolismo , Administração Oral , Aldosterona/sangue , Animais , Transporte Biológico , Citocromo P-450 CYP11B2/deficiência , Citocromo P-450 CYP11B2/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Natriurese , Fosforilação , Potássio na Dieta/administração & dosagem , Potássio na Dieta/urina , Receptores de Droga/deficiência , Receptores de Droga/genética , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/deficiência , Simportadores/genética , Fatores de Tempo , Equilíbrio Hidroeletrolítico
19.
Pflugers Arch ; 464(4): 331-43, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941338

RESUMO

Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS(-/-)) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS(-/-) and AS(+/+) females were mated with AS(+/+) and AS(-/-) males, respectively, always generating AS(+/-) offspring. With maternal aldosterone deficiency in AS(-/-) mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS(-/-) had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS(-/-) females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS(-/-) was slightly improved and the differences in placental and fetal weights between AS(+/+) and AS(-/-) mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS(-/-) placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsia.


Assuntos
Aldosterona/deficiência , Resultado da Gravidez , Aldosterona/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Citocromo P-450 CYP11B2/genética , Dieta , Modelos Animais de Doenças , Feminino , Morte Fetal/genética , Morte Fetal/metabolismo , Morte Fetal/fisiopatologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Idade Gestacional , Heterozigoto , Homozigoto , Linfócitos/fisiologia , Masculino , Camundongos , Mutação , Necrose , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placenta/patologia , Placenta/fisiopatologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/genética , Gravidez , Proteinúria/genética , Cloreto de Sódio/farmacologia
20.
Histochem Cell Biol ; 138(1): 101-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22466139

RESUMO

TBC1D4 (or AS160) was identified as a Rab-GTPase activating protein (Rab-GAP) that controls insulin-dependent trafficking of the glucose transporter GLUT4 in skeletal muscle cells and in adipocytes. Recent in vitro cell culture studies suggest that TBC1D4 may also regulate the intracellular trafficking of kidney proteins such as the vasopressin-dependent water channel AQP2, the aldosterone-regulated epithelial sodium channel ENaC, and the Na(+)-K(+)-ATPase. To study the possible role of TBC1D4 in the kidney in vivo, we raised a rabbit polyclonal antibody against TBC1D4 to be used for immunoblotting and immunohistochemical studies. In immunoblots on mouse kidney homogenates, the antibody recognizes specific bands at the expected size of 160 kDa and at lower molecular weights, which are absent in kidneys of TBC1D4 deficient mice. Using a variety of nephron-segment-specific marker proteins, immunohistochemistry reveals TBC1D4 in the cytoplasm of the parietal epithelial cells of Bowman's capsule, the thin and thick limbs of Henle's loop, the distal convoluted tubule, the connecting tubule, and the collecting duct. In the latter, both principal as well as intercalated cells are TBC1D4-positive. Thus, with the exception of the proximal tubule, TBC1D4 is highly expressed along the nephron and the collecting duct, where it may interfere with the intracellular trafficking of many renal transport proteins including AQP2, ENaC and Na(+)-K(+)-ATPase. Hence, TBC1D4 may play an important role for the control of renal ion and water handling and hence for the control of extracellular fluid homeostasis.


Assuntos
Proteínas Ativadoras de GTPase/análise , Túbulos Renais Distais/metabolismo , Animais , Imunofluorescência , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Rim/metabolismo , Alça do Néfron/metabolismo , Camundongos , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA