Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(3): 033703, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012738

RESUMO

This report highlights the combination of the MicroTime 100 upright confocal fluorescence lifetime microscope with a Single Quantum Eos Superconducting Nanowire Single-Photon Detector (SNSPD) system as a powerful tool for photophysical research and applications. We focus on an application in materials science, photoluminescence imaging, and lifetime characterization of Cu(InGa)Se2 (CIGS) devices intended for solar cells. We demonstrate improved sensitivity, signal-to-noise ratio, and time-resolution in combination with confocal spatial resolution in the near-infrared (NIR) range, specifically in the 1000-1300 nm range. The MicroTime 100-Single Quantum Eos system shows two orders of magnitude higher signal-to-noise ratio for CIGS devices' photoluminescence imaging compared to a standard NIR-photomultiplier tube (NIR-PMT) and a three-fold improvement in time resolution, which is now limited by the laser pulse width. Our results demonstrate the advantages in terms of image quality and time resolution of SNSPDs technology for imaging in materials science.

2.
Nat Commun ; 11(1): 4355, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859915

RESUMO

The genome of influenza A viruses (IAV) is encoded in eight distinct viral ribonucleoproteins (vRNPs) that consist of negative sense viral RNA (vRNA) covered by the IAV nucleoprotein. Previous studies strongly support a selective packaging model by which vRNP segments are bundling to an octameric complex, which is integrated into budding virions. However, the pathway(s) generating a complete genome bundle is not known. We here use a multiplexed FISH assay to monitor all eight vRNAs in parallel in human lung epithelial cells. Analysis of 3.9 × 105 spots of colocalizing vRNAs provides quantitative insights into segment composition of vRNP complexes and, thus, implications for bundling routes. The complexes rarely contain multiple copies of a specific segment. The data suggest a selective packaging mechanism with limited flexibility by which vRNPs assemble into a complete IAV genome. We surmise that this flexibility forms an essential basis for the development of reassortant viruses with pandemic potential.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , RNA Viral/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Células A549 , Células Epiteliais/virologia , Evolução Molecular , Humanos , Hibridização In Situ , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/virologia , Pulmão , Modelos Teóricos , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA