Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(9): 519, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110252

RESUMO

Functional materials with organic/inorganic composites as the main matrix and rare earth ion complexes as the guest have shown a very broad application prospect for antibiotic sensors. However, Eu3+-complex often relies on a single fluorescence response signal, which is susceptible to changes in the detection environment and cannot simultaneously detect and remove tetracycline (TC). Herein, green fluorescent covalent two-dimensional organic framework (COF-TD) is synthesized, followed by modification of Eu3+ to synthesize COF-TD@Eu3+. In the ratiometric sensor, Eu3+ serves as the recognition site and specific response probe for TC, while COF-TD is the fluorescence reference and carrier for Eu3+. Due to the antenna effect, TC enhances the red fluorescence of Eu3+, while the green fluorescence of COF-TD remains almost stable. Based on the change of fluorescence intensity and fluorescence color from green to red, the efficient ratiometric sensing can be finished in 1 min. The developed method shows high sensitivity with a detection limit of 0.3 µM and high selectivity to TC which makes the method applicable to detect TC in traditional Chinese medicine preparations. In addition, due to the high specific surface area of COFs and specific adsorption sites, COF-TD@Eu3+ also shows good performance for TC removal. The findings show that the maximum adsorption capacity is 137.3 mg g-1 and the adsorption equilibrium is reached in 30 min. Smartphone assisted COF-TD@Eu3+ for both ratiometric fluorescence detection and detecting the absorption of TC is proposed for the first time. The molecular cryptosteganography that transforms the selective response of COF-TD@Eu3+ to binary strings is anticipated to advance utilization of nanomaterials in logic sensing and information safety.


Assuntos
Európio , Corantes Fluorescentes , Limite de Detecção , Estruturas Metalorgânicas , Espectrometria de Fluorescência , Tetraciclina , Európio/química , Estruturas Metalorgânicas/química , Tetraciclina/análise , Tetraciclina/química , Adsorção , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Antibacterianos/análise , Antibacterianos/química , Fluorescência
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124610, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852306

RESUMO

Developing rapid tetracycline sensing system is of great significance to monitor the illegal addition to drugs and pollution to food and ecosystem. By loading covalent organic frameworks (COFs) with Eu3+, a new hybridized material (COF@Eu3+) was prepared for tetracycline determination. Based on the Schiff base reaction, the COFs were by synthesized through solvent evaporation in 30 min at room temperature. Thereafter, Eu3+ was modified into COFs to develop the COF@Eu3+ sensing platform by adsorption and coordination. In presence of tetracycline, tetracycline can displace water molecules and coordinate with Eu3+ through the antenna effect. As a result, the red fluorescence of Eu3+ was enhanced by tetracycline with green fluorescence of COF as a reference. The developed ratiometric fluorescence sensor exhibits a linear range of 0.1-20 µM for detecting tetracycline with a detection limit of 30 nM. Integrated with a smartphone, the rapid tetracycline detection can be realized in situ, which is potential for high-throughput screening of tetracycline contaminated samples. Furthermore, the COF@Eu3+ fluorescence sensor has been successfully applied to the detection of tetracycline in traditional Chinese medicine compound preparation with satisfied recoveries. Therefore, a smartphone-assisted device was successfully developed based on Eu3+-functionalized COF, which is an attractive candidate for further applications of fluorescence sensing and visual detection.


Assuntos
Európio , Limite de Detecção , Estruturas Metalorgânicas , Smartphone , Espectrometria de Fluorescência , Tetraciclina , Tetraciclina/análise , Európio/química , Espectrometria de Fluorescência/métodos , Estruturas Metalorgânicas/química , Fluorescência , Corantes Fluorescentes/química
3.
Talanta ; 278: 126526, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996564

RESUMO

Understanding charge transport in metal ion-mediated glutathione-stabilized gold nanoclusters (GSH-Au NCs) has proved difficult due to the presence of various competitive mechanisms, such as electron transfer (ET) and aggregation induction effect (AIE). In this paper, we present a dual-channel fluorescence (FL) and second-order Rayleigh scattering (SRS) sensing method for high-throughput classification of metal ions, relying on the competition between ET and AIE using GSH-Au NCs. The SRS signals show significant enhancement when Pb2+, Ag+, Al3+, Cu2+, Fe3+, and Hg2+ are present, as a result of the aggregation of GSH-Au NCs. Notably, the fluorescence signal exhibits the opposite trend. The FL intensities of GSH-Au NCs are enhanced by Pb2+, Ag+, and Al3+ through the AIE mechanism, while they are quenched by Cu2+, Fe3+, and Hg2+, which is dominated by the ET mechanism. By employing principal component analysis and hierarchical cluster analysis, these signals are transformed into unique fingerprints and Euclidean distances, respectively, enabling successful distinction of six metal ions and their mixtures with a low detection limit of 30 nM. This new strategy has successfully addressed interference from impurities in the testing of real water samples, demonstrating its strong ability to detect multiple metal ions. Impressively, we have achieved molecular cryptosteganography, which involves encoding, storing, and concealing information by transforming the selective response of GSH-Au NCs to binary strings. This research is anticipated to advance utilization of nanomaterials in logic sensing and information safety, bridging the gap between molecular sensors and information systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA