Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 205: 107242, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823470

RESUMO

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.


Assuntos
Dor Crônica , Gânglios Espinais , Neuralgia , Receptores CCR2 , Animais , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Dor Crônica/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Humanos , Dor do Câncer/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL
2.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757529

RESUMO

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Assuntos
Quimiocina CCL2/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Dor/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Animais , Células Cultivadas , Adjuvante de Freund/toxicidade , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injeções Espinhais , Masculino , Dor/induzido quimicamente , Dor/tratamento farmacológico , Pirrolidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
3.
J Cell Physiol ; 235(12): 9676-9690, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32420639

RESUMO

Cell migration is a ubiquitous process necessary to maintain and restore tissue functions. However, in cancer, cell migration leads to metastasis development and thus worsens the prognosis. Although the mechanism of cell migration is well understood, the identification of new targets modulating cell migration and deciphering their signaling events could lead to new therapies to restore tissue functions in diseases, such as inflammatory bowel disease, or to block metastatic development in different forms of cancer. Previous research has identified the G-protein-coupled P2Y6 receptor as an innovative target that could dictate cell migration under normal and pathological conditions. Surprisingly, there is little information on the cellular events triggered by activated P2Y6 during cell migration. Here, we demonstrated that P2Y6 activation stimulated A549 human lung cancer cells and Caco-2 colorectal cancer cell migration. Activated P2Y6 increased the number of filopodia and focal adhesions; two migratory structures required for cell migration. The generation of these structures involved Gαq /calcium/protein kinases C (PKC) and Gα13 /RHO-associated protein kinase-dependent pathways that dictate the formation of the migratory structures. These pathways led to the stabilization of the actin cytoskeleton through a PKC-dependent phosphorylation of cofilin. These results support the idea that the P2Y6 receptor represents a target of interest to modulate cell migration and revealed an intricate dialogue between two Gα-protein signaling pathways.


Assuntos
Movimento Celular/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteína Quinase C-alfa/genética , Receptores Purinérgicos P2/genética , Células A549 , Actinas/genética , Células CACO-2 , Cálcio/metabolismo , Extensões da Superfície Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Quinases Associadas a rho/genética
4.
Pharmacol Res ; 155: 104750, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151680

RESUMO

Pepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation. We observed partial Gαq and Gα13 activation at a 10 µM concentration, indicating that these pepducins may act as allosteric agonists of NTS1. Additionally, we used surface plasmon resonance (SPR) as a label-free assay to monitor pepducin-induced responses in CHO-K1 cells stably expressing hNTS1. This whole-cell integrated assay enabled us to subdivide our pepducin series into three profile response groups. In order to determine the pepducins' antinociceptive potential, we then screened the series in an acute pain model (tail-flick test) by measuring tail withdrawal latencies to a thermal nociceptive stimulus, following intrathecal (i.t.) pepducin administration (275 nmol/kg). We further evaluated promising pepducins in a tonic pain model (formalin test), as well as in neuropathic (Chronic Constriction Injury) and inflammatory (Complete Freund's Adjuvant) chronic pain models. We report one pepducin, PP-001, that consistently reduced rat nociceptive behaviors, even in chronic pain paradigms. Finally, we designed a TAMRA-tagged version of PP-001 and found by confocal microscopy that the pepducin reached the rat dorsal root ganglia post i.t. injection, thus potentially modulating the activity of NTS1 at this location to produce its analgesic effect. Altogether, these results suggest that NTS1-derived pepducins may represent a promising strategy in pain-relief.


Assuntos
Analgésicos/uso terapêutico , Peptídeos Penetradores de Células/uso terapêutico , Lipopeptídeos/uso terapêutico , Dor/tratamento farmacológico , Receptores de Neurotensina , Analgésicos/farmacologia , Animais , Células CHO , Peptídeos Penetradores de Células/farmacologia , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Gânglios Espinais/metabolismo , Lipopeptídeos/farmacologia , Masculino , Dor/genética , Dor/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
Pharmacol Res ; 131: 7-16, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530600

RESUMO

The apelinergic system is an important player in the regulation of both vascular tone and cardiovascular function, making this physiological system an attractive target for drug development for hypertension, heart failure and ischemic heart disease. Indeed, apelin exerts a positive inotropic effect in humans whilst reducing peripheral vascular resistance. In this study, we investigated the signaling pathways through which apelin exerts its hypotensive action. We synthesized a series of apelin-13 analogs whereby the C-terminal Phe13 residue was replaced by natural or unnatural amino acids. In HEK293 cells expressing APJ, we evaluated the relative efficacy of these compounds to activate Gαi1 and GαoA G-proteins, recruit ß-arrestins 1 and 2 (ßarrs), and inhibit cAMP production. Calculating the transduction ratio for each pathway allowed us to identify several analogs with distinct signaling profiles. Furthermore, we found that these analogs delivered i.v. to Sprague-Dawley rats exerted a wide range of hypotensive responses. Indeed, two compounds lost their ability to lower blood pressure, while other analogs significantly reduced blood pressure as apelin-13. Interestingly, analogs that did not lower blood pressure were less effective at recruiting ßarrs. Finally, using Spearman correlations, we established that the hypotensive response was significantly correlated with ßarr recruitment but not with G protein-dependent signaling. In conclusion, our results demonstrated that the ßarr recruitment potency is involved in the hypotensive efficacy of activated APJ.


Assuntos
Anti-Hipertensivos/farmacologia , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , beta-Arrestinas/metabolismo , Animais , Anti-Hipertensivos/química , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotensão/tratamento farmacológico , Hipotensão/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Bioorg Med Chem Lett ; 28(13): 2320-2323, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29853330

RESUMO

In this study, affinities and activities of derivatized analogues of Dmt-dermorphin[1-4] (i.e. Dmt-d-Ala-Phe-GlyNH2, Dmt = 2',6'-dimethyl-(S)-tyrosine) for the µ opioid receptor (MOP) and δ opioid receptor (DOP) were evaluated using radioligand binding studies, functional cell-based assays and isolated organ bath experiments. By means of solid-phase or solution-phase Suzuki-Miyaura cross-couplings, various substituted regioisomers of the phenylalanine moiety in position 3 of the sequence were prepared. An 18-membered library of opioid tetrapeptides was generated via screening of the chemical space around the Phe3 side chain. These substitutions modulated bioactivity, receptor subtype selectivity and highly effective ligands with subnanomolar binding affinities, contributed to higher functional activities and potent analgesic actions. In search of selective peptidic ligands, we show here that the Suzuki-Miyaura reaction is a versatile and robust tool which could also be deployed elsewhere.


Assuntos
Analgésicos Opioides/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Cobaias , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ratos Sprague-Dawley
7.
Org Biomol Chem ; 15(2): 449-458, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924341

RESUMO

Apelin is the endogenous ligand for the G protein-coupled receptor APJ and exerts a key role in regulating cardiovascular functions. We report herein a novel series of macrocyclic analogues of apelin-13 in which the N- and C-terminal residues as well as the macrocycle composition were chemically modified to modulate structure-activity relationships on the APJ receptor. To this end, the binding affinity and the ability to engage G protein-dependent and G protein-independent signalling pathways of the resulting analogues were assessed. In this series, the position and the nature of the C-terminal aromatic residue is a determinant for APJ interaction and ß-arrestin recruitment, as previously demonstrated for linear apelin-13 derivatives. We finally discovered compounds 1, 4, 11 and 15, four potent G protein-biased apelin receptor agonists exhibiting affinity in the nanomolar range for APJ. These macrocyclic compounds represent very useful pharmacological tools to explore the therapeutic potential of the apelinergic system.


Assuntos
Receptores de Apelina/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Compostos Macrocíclicos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intercelular/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/química , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Masculino , Conformação Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
8.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27306408

RESUMO

BACKGROUND: Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund's adjuvant. RESULTS: To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2'-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund's adjuvant-induced inflammatory chronic pain model. CONCLUSION: Altogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central pathologies such as chronic pain.


Assuntos
Dor/metabolismo , Dor/prevenção & controle , RNA Interferente Pequeno/metabolismo , Receptores CCR2/antagonistas & inibidores , Ribonuclease III/metabolismo , Animais , Forma Celular , Fluorescência , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Inflamação/complicações , Inflamação/patologia , Masculino , Neuroglia/metabolismo , Dor/complicações , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores CCR2/genética , Reprodutibilidade dos Testes , Medula Espinal/metabolismo , Especificidade por Substrato
9.
Bioorg Med Chem Lett ; 25(10): 2060-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881832

RESUMO

Compounds acting via the GPCR neurotensin receptor type 2 (NTS2) display analgesia in relevant preclinical models. The amide bond in nonpeptide NTS1 antagonists plays a central role in receptor recognition and molecular conformation. Using NTS2 FLIPR and binding assays, we found that it is also a key molecular structure for binding and calcium mobilization at NTS2. We found that reversed amides display a shift from agonist to antagonist activity and provided examples of the first competitive nonpeptide antagonists observed in the NTS2 FLIPR assay. These compounds will be valuable tools for determining the role of calcium signaling in vitro to NTS2 mediated analgesia.


Assuntos
Amidas/química , Sinalização do Cálcio/fisiologia , Receptores de Neurotensina/química , Amidas/farmacologia , Amidas/uso terapêutico , Bioensaio , Relação Dose-Resposta a Droga , Ligantes , Estrutura Molecular , Dor/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/metabolismo
10.
Bioorg Med Chem Lett ; 25(2): 292-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25499438

RESUMO

Compounds acting via the GPCR neurotensin receptor type 2 (NTS2) display analgesic effects in relevant animal models. Using a pharmacophore model based on known NT receptor nonpeptide compounds, we screened commercial databases to identify compounds that might possess activity at NTS2 receptor sites. Modification of our screening hit to include structural features known to be recognized by NTS1 and NTS2, led to the identification of the novel NTS2 selective nonpeptide, N-{[6-chloro-4-(2,6-dimethoxyphenyl)quinazolin-2-yl]carbonyl}-l-leucine (9). This compound is a potent partial agonist in the FLIPR assay with a profile of activity similar to that of the reference NTS2 analgesic nonpeptide levocabastine (5).


Assuntos
Agonismo Parcial de Drogas , Leucina/análogos & derivados , Quinazolinas/farmacologia , Receptores de Neurotensina/agonistas , Cálcio/metabolismo , Humanos , Leucina/química , Leucina/farmacologia , Modelos Moleculares , Estrutura Molecular , Quinazolinas/química , Ensaio Radioligante , Relação Estrutura-Atividade
11.
Biopolymers ; 102(4): 297-303, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24728860

RESUMO

Apelin is the endogenous ligand of APJ, which belongs to the superfamily of G protein-coupled receptors. In recent years, the apelin/APJ system has been detected in many tissues and emerges as a promising target for the treatment of various pathophysiological conditions. Pyr1-apelin-13 is the major isoform of apelin in human plasma; however its stability and proteolytic degradation pattern remain poorly understood. The aim of the present study was first to identify the cleavage sites of Pyr1-apelin-13 in mouse, rat and human plasma and rat cerebrospinal fluid, then to determine its stability to proteolytic degradation following intravenous administration in rats. Secondly, key residues were substituted by natural and unnatural amino acids in order to examine the impact on in vitro stability and degradation pattern. The kinetics of degradation revealed that the Leu5-Ser6 peptide bond of Pyr1-apelin-13 is the first cleavage observed in plasma, independently of the species. Replacement of Phe13 by unnatural amino acids showed a 10-fold increase in plasma stability although the hydrolysis of Pro12-Phe13 bond, previously described as a site of cleavage by ACE-2, was not observed. In vivo, this Pro12-Phe13 bond was cleaved yet appears as a minor product compared to hydrolysis of the Pro10-Met11 bond. This study pinpoints the most critical amino acids targeted by proteases and will be instrumental for the design of Pyr1-apelin-13 analogs possessing increased stability.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Proteólise , Animais , Meia-Vida , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ácido Poliglutâmico/química , Estabilidade Proteica , Ratos Sprague-Dawley
13.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119476, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059189

RESUMO

Endosomal trafficking is intricately linked to G protein-coupled receptors (GPCR) fate and signaling. Extracellular uridine diphosphate (UDP) acts as a signaling molecule by selectively activating the GPCR P2Y6. Despite the recent interest for this receptor in pathologies, such as gastrointestinal and neurological diseases, there is sparse information on the endosomal trafficking of P2Y6 receptors in response to its endogenous agonist UDP and synthetic selective agonist 5-iodo-UDP (MRS2693). Confocal microscopy and cell surface ELISA revealed delayed internalization kinetics in response to MRS2693 vs. UDP stimulation in AD293 and HCT116 cells expressing human P2Y6. Interestingly, UDP induced clathrin-dependent P2Y6 internalization, whereas receptor stimulation by MRS2693 endocytosis appeared to be associated with a caveolin-dependent mechanism. Internalized P2Y6 was associated with Rab4, 5, and 7 positive vesicles independent of the agonist. We have measured a higher frequency of receptor expression co-occurrence with Rab11-vesicles, the trans-Golgi network, and lysosomes in response to MRS2693. Interestingly, a higher agonist concentration reversed the delayed P2Y6 internalization and recycling kinetics in the presence of MRS2693 stimulation without changing its caveolin-dependent internalization. This work showed a ligand-dependent effect affecting the P2Y6 receptor internalization and endosomal trafficking. These findings could guide the development of bias ligands that could influence P2Y6 signaling.


Assuntos
Receptores Acoplados a Proteínas G , Difosfato de Uridina , Humanos , Ligantes , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Difosfato de Uridina/metabolismo , Proteínas de Ligação ao GTP/metabolismo
14.
ACS Pharmacol Transl Sci ; 6(2): 290-305, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798478

RESUMO

Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring ß-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 ß-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of ß-arrestin 2 signaling with partial maximal efficacy (EC50 ß-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.

15.
J Med Chem ; 65(1): 531-551, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34982553

RESUMO

We previously reported a series of macrocyclic analogues of [Pyr1]-apelin-13 (Ape13) with increased plasma stability and potent APJ agonist properties. Based on the most promising compound in this series, we synthesized and then evaluated novel macrocyclic compounds of Ape13 to identify agonists with specific pharmacological profiles. These efforts led to the development of analogues 39 and 40, which possess reduced molecular weight (MW 1020 Da vs Ape13, 1534 Da). Interestingly, compound 39 (Ki 0.6 nM), which does not activate the Gα12 signaling pathway while maintaining potency and efficacy similar to Ape13 to activate Gαi1 (EC50 0.8 nM) and ß-arrestin2 recruitment (EC50 31 nM), still exerts cardiac actions. In addition, analogue 40 (Ki 5.6 nM), exhibiting a favorable Gα12-biased signaling and an increased in vivo half-life (t1/2 3.7 h vs <1 min of Ape13), produces a sustained cardiac response up to 6 h after a single subcutaneous bolus injection.


Assuntos
Apelina/análogos & derivados , Apelina/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Coração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apelina/farmacocinética , Receptores de Apelina/efeitos dos fármacos , Arrestina/efeitos dos fármacos , Células HEK293 , Meia-Vida , Humanos , Injeções Subcutâneas , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Peso Molecular
16.
Nat Struct Mol Biol ; 29(7): 688-697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817871

RESUMO

The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
17.
J Med Chem ; 64(4): 2110-2124, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33538583

RESUMO

Neurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional in vivo characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides. Replacement of Ile12 by Leu, and Pro7/Pro10 by allylglycine residues followed by cyclization via ring-closing metathesis led to macrocycle 4, which exhibits good affinity for NTS2 (50 nM), high selectivity over NTS1 (>100 µM), and improved stability compared to NT(8-13). In vivo profiling in rats reveals that macrocycle 4 produces potent analgesia in three distinct rodent pain models, without causing the undesired effects associated with NTS1 activation. We further provide evidence of its non-opioid antinociceptive activity, therefore highlighting the strong therapeutic potential of NTS2-selective analogs for the management of acute and chronic pain.


Assuntos
Analgésicos/uso terapêutico , Neurotensina/análogos & derivados , Neurotensina/uso terapêutico , Dor/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptores de Neurotensina/metabolismo , Analgésicos/síntese química , Animais , Desenho de Fármacos , Masculino , Estrutura Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/uso terapêutico , Peptídeos Cíclicos/síntese química , Ratos Sprague-Dawley , Relação Estrutura-Atividade
18.
Biomed Pharmacother ; 141: 111861, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229249

RESUMO

The current opioid crisis highlights the urgent need to develop safe and effective pain medications. Thus, neurotensin (NT) compounds represent a promising approach, as the antinociceptive effects of NT are mediated by activation of the two G protein-coupled receptor subtypes (i.e., NTS1 and NTS2) and produce potent opioid-independent analgesia. Here, we describe the synthesis and pharmacodynamic and pharmacokinetic properties of the first constrained NTS2 macrocyclic NT(8-13) analog. The Tyr11 residue of NT(8-13) was replaced with a Trp residue to achieve NTS2 selectivity, and a rationally designed side-chain to side-chain macrocyclization reaction was applied between Lys8 and Trp11 to constrain the peptide in an active binding conformation and limit its recognition by proteolytic enzymes. The resulting macrocyclic peptide, CR-01-64, exhibited high-affinity for NTS2 (Ki 7.0 nM), with a more than 125-fold selectivity over NTS1, as well as an improved plasma stability profile (t1/2 > 24 h) compared with NT (t1/2 ~ 2 min). Following intrathecal administration, CR-01-64 exerted dose-dependent and long-lasting analgesic effects in acute (ED50 = 4.6 µg/kg) and tonic (ED50 = 7.1 µg/kg) pain models as well as strong mechanical anti-allodynic effects in the CFA-induced chronic inflammatory pain model. Of particular importance, this constrained NTS2 analog exerted potent nonopioid antinociceptive effects and potentiated opioid-induced analgesia when combined with morphine. At high doses, CR-01-64 did not cause hypothermia or ileum relaxation, although it did induce mild and short-term hypotension, all of which are physiological effects associated with NTS1 activation. Overall, these results demonstrate the strong therapeutic potential of NTS2-selective analogs for the management of pain.


Assuntos
Analgésicos não Narcóticos/farmacologia , Compostos Macrocíclicos/farmacologia , Receptores de Neurotensina/efeitos dos fármacos , Analgésicos não Narcóticos/síntese química , Analgésicos não Narcóticos/farmacocinética , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Ciclização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Sinergismo Farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacocinética , Masculino , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
19.
Front Pharmacol ; 12: 709467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385922

RESUMO

Objectives: Arterial hypertension, when exacerbated by excessive dietary salt intake, worsens the morbidity and mortality rates associated with cardiovascular and renal diseases. Stimulation of the apelinergic system appears to protect against several circulatory system diseases, but it remains unknown if such beneficial effects are conserved in severe hypertension. Therefore, we aimed at determining whether continuous infusion of apelinergic ligands (i.e., Apelin-13 and Elabela) exerted cardiorenal protective effects in spontaneously hypertensive (SHR) rats receiving high-salt diet. Methods: A combination of echocardiography, binding assay, histology, and biochemical approaches were used to investigate the cardiovascular and renal effects of Apelin-13 or Elabela infusion over 6 weeks in SHR fed with normal-salt or high-salt chow. Results: High-salt intake upregulated the cardiac and renal expression of APJ receptor in SHR. Importantly, Elabela was more effective than Apelin-13 in reducing high blood pressure, cardiovascular and renal dysfunctions, fibrosis and hypertrophy in high-salt fed SHR. Unlike Apelin-13, the beneficial effects of Elabela were associated with a counter-regulatory role of the ACE/ACE2/neprilysin axis of the renin-angiotensin-aldosterone system (RAAS) in heart and kidneys of salt-loaded SHR. Interestingly, Elabela also displayed higher affinity for APJ in the presence of high salt concentration and better resistance to RAAS enzymes known to cleave Apelin-13. Conclusion: These findings highlight the protective action of the apelinergic system against salt-induced severe hypertension and cardiorenal failure. As compared with Apelin-13, Elabela displays superior pharmacodynamic and pharmacokinetic properties that warrant further investigation of its therapeutic use in cardiovascular and kidney diseases.

20.
Behav Brain Res ; 405: 113189, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607165

RESUMO

The endogenous tridecapeptide neurotensin (NT) has emerged as an important inhibitory modulator of pain transmission, exerting its analgesic action through the activation of the G protein-coupled receptors, NTS1 and NTS2. Whereas both NT receptors mediate the analgesic effects of NT, NTS1 activation also produces hypotension and hypothermia, which may represent obstacles for the development of new pain medications. In the present study, we implemented various chemical strategies to improve the metabolic stability of the biologically active fragment NT(8-13) and assessed their NTS1/NTS2 relative binding affinities. We then determined their ability to reduce the nociceptive behaviors in acute, tonic, and chronic pain models and to modulate blood pressure and body temperature. To this end, we synthesized a series of NT(8-13) analogs carrying a reduced amide bond at Lys8-Lys9 and harboring site-selective modifications with unnatural amino acids, such as silaproline (Sip) and trimethylsilylalanine (TMSAla). Incorporation of Sip and TMSAla respectively in positions 10 and 13 of NT(8-13) combined with the Lys8-Lys9 reduced amine bond (JMV5296) greatly prolonged the plasma half-life time over 20 h. These modifications also led to a 25-fold peptide selectivity toward NTS2. More importantly, central delivery of JMV5296 was able to induce a strong antinociceptive effect in acute (tail-flick), tonic (formalin), and chronic inflammatory (CFA) pain models without inducing hypothermia. Altogether, these results demonstrate that the chemically-modified NT(8-13) analog JMV5296 exhibits a better therapeutic profile and may thus represent a promising avenue to guide the development of new stable NT agonists and improve pain management.


Assuntos
Dor Aguda/tratamento farmacológico , Analgesia , Analgésicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Neurotensina/farmacologia , Dor Nociceptiva/tratamento farmacológico , Analgésicos/química , Animais , Modelos Animais de Doenças , Masculino , Neurotensina/análise , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA