Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(4): 65, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740141

RESUMO

Lactic acid bacteria are the predominant group within meat products, whose metabolites such as bacteriocins and peptidoglycan hydrolases inhibit pathogenic or spoilage bacteria. Fermented meat products, as a salami, is a good source to analyze the viable microbiota, due to these products present a low risk to consumer health. The aim of this work was to identify the lactic acid bacteria with broad antibacterial activity present in salami, purify the protein responsible for this activity, achieve antagonistic spectrum and perform the biochemical characterization. Five strains from salami were selected, isolated and identified by 16S rRNA gene sequencing. The antimicrobial activity was evaluated by antagonism assay and zymography, using spoilage microorganisms commonly found in meat products. The strain that showed a broad antibacterial activity was Latilactobacillus sakei and the antibacterial activity was given by a protein with 75-kDa of molecular mass, identified by LC/MALDI-TOF/TOF. The sequence analysis showed 67% of identity with a N-acetylmuramoyl-L-alanine amidase protein with five non-identical LysM domains. The purified protein showed an optimal pH of 8.0 and heat resistance at 80 °C for 10 min. L. sakei strain displayed antibacterial activity against Gram-negative and Gram-positive spoilage microorganisms. The results of this study provide the information to use Latilactobacillus sakei as a starter culture which will provide the necessary metabolites to combat undesirable microorganisms. Additionally, the conditions and properties for the best application and use of the antibacterial protein produced by this strain. This protein may have a potential use in the food industry as a new antibacterial agent.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Produtos da Carne/microbiologia , N-Acetil-Muramil-L-Alanina Amidase/biossíntese , Bactérias/efeitos dos fármacos , Bacteriocinas/farmacologia , Fermentação , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Lactobacillus/genética , Testes de Sensibilidade Microbiana , Peso Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , RNA Ribossômico 16S
2.
World J Microbiol Biotechnol ; 37(11): 196, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34654973

RESUMO

The gene encoding N-acetylmuramoyl-L-alanine amidase in Latilactobacillus sakei isolated from a fermented meat product was cloned in two forms: its complete sequence (AmiC) and a truncated sequence without one of its anchoring LysM domains (AmiLysM4). The objective of this work was to evaluate the effect of LysM domain deletion on antibacterial activity as well the biochemical characterization of each recombinant protein. AmiC and AmiLysM4 were expressed in Escherichia coli BL21. Using a zymography method, two bands with lytic activity were observed, which were confirmed by LC-MS/MS analysis, with molecular masses of 71 kDa (AmiC) and 66 kDa (AmiLysM4). The recombinant proteins were active against Listeria innocua and Staphylococcus aureus strains. The inhibitory spectrum of AmiLysM4 was broader than AmiC as it showed inhibition of Leuconostoc mesenteroides and Weissella viridescens, both microorganisms associated with food decomposition. Optimal temperature and pH values were determined for both proteins using L-alanine-p-nitroanilide hydrochloride as a substrate for N-acetylmuramoyl-L-alanine amidase activity. Both proteins showed similar maximum activity values for pH (8) and temperature (50 °C). Furthermore, structural predictions did not show differences for the catalytic region, but differences were found for the region called 2dom-AmiLysM4, which includes 4 of the 5 LysM domains. Therefore, modification of the LysM domain offers new tools for the development of novel food biopreservatives.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Lactobacillaceae/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Antibacterianos/química , Domínio Catalítico , Clonagem Molecular , Concentração de Íons de Hidrogênio , Lactobacillaceae/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA