Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microb Cell Fact ; 23(1): 41, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321489

RESUMO

BACKGROUND: Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS: This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS: Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Vacinas contra COVID-19 , Escherichia coli , Administração Oral , Antígenos Virais , Anticorpos Neutralizantes , Peptídeos , Anticorpos Antivirais
2.
Mol Pharm ; 17(12): 4572-4588, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33125243

RESUMO

Neurotensin (NTS)-polyplex is a multicomponent nonviral vector that enables gene delivery via internalization of the neurotensin type 1 receptor (NTSR1) to dopaminergic neurons and cancer cells. An approach to improving its therapeutic safety is replacing the viral karyophilic component (peptide KPSV40; MAPTKRKGSCPGAAPNKPK), which performs the nuclear import activity, by a shorter synthetic peptide (KPRa; KMAPKKRK). We explored this issue and the mechanism of plasmid DNA translocation through the expression of the green fluorescent protein or red fluorescent protein fused with KPRa and internalization assays and whole-cell patch-clamp configuration experiments in a single cell together with importin α/ß pathway blockers. We showed that KPRa electrostatically bound to plasmid DNA increased the transgene expression compared with KPSV40 and enabled nuclear translocation of KPRa-fused red fluorescent proteins and plasmid DNA. Such translocation was blocked with ivermectin or mifepristone, suggesting importin α/ß pathway mediation. KPRa also enabled NTS-polyplex-mediated expression of reporter or physiological genes such as human mesencephalic-derived neurotrophic factor (hMANF) in dopaminergic neurons in vivo. KPRa is a synthetic monopartite peptide that showed nuclear import activity in NTS-polyplex vector-mediated gene delivery. KPRa could also improve the transfection of other nonviral vectors used in gene therapy.


Assuntos
Portadores de Fármacos/síntese química , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Neurotensina/administração & dosagem , Fragmentos de Peptídeos/síntese química , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Masculino , Camundongos , Modelos Animais , Nanopartículas/química , Neurotensina/genética , Neurotensina/farmacocinética , Técnicas de Patch-Clamp , Plasmídeos/genética , Ratos , Receptores de Neurotensina/metabolismo , Análise de Célula Única , Técnicas Estereotáxicas
3.
Discov Nano ; 19(1): 60, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564106

RESUMO

Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 µL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.

4.
Neural Regen Res ; 19(9): 2057-2067, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227536

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral ß-sitosterol ß-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral ß-sitosterol ß-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced ß-sitosterol ß-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker ß-galactosidase and more neuron-cytoskeleton marker ßIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.

5.
MethodsX ; 7: 100821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195138

RESUMO

An animal model, suitable for resembling Parkinson's disease (PD) progress, should show both, motor and non-motor alterations. However, these features have been scarcely evaluated or developed in parkinsonian models induced by neurotoxins. This protocol provides modifications to original methods, allowing six different motor and non-motor behavior tests, which adequately and timely emulate the main parkinsonian sensorimotor alterations in the rat or mouse: (1) bilateral sensorimotor alterations, examined by the vibrissae test; (2) balance and motor coordination, evaluated by the uncoordinated gait test; (3) locomotor asymmetry, analyzed by the cylinder test; (4) bradykinesia, as a locomotor alteration evidenced by the open field test; (5) depressive-like behavior, judged by the forced swimming test; and (6) hyposmia, assessed by the olfactory asymmetry test. Some advantages of using these behavioral tests over others include:•No sophisticated materials or equipment are required for their application and evaluation.•They are used in rodent models for parkinsonian research, but they can also be helpful for studying other movement disorders.•These tests can accurately discriminate the affected side from the healthy one, after unilateral injury of one hemisphere, resulting in sensorimotor, olfactory or locomotor asymmetry.

6.
Behav Brain Res ; 378: 112279, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31606429

RESUMO

Parkinson's disease (PD) is a progressive neuropathology characterized by motor and non-motor alterations. ß-sitosterol ß-d-glucoside (BSSG) is a neurotoxin whose prolonged oral administration in rats has been proposed as a new PD model. Herein, we demonstrate that a single, unilateral, and intranigral administration of BSSG also elicits bilateral sensorimotor alterations in the rat. Six behavioral tests evaluated the effect of different concentrations of BSSG (3, 6, 9, and 12 µg/µL DMSO) from 15 to 120 days after administration. The first behavioral alterations, which appeared on day 15, were unbalanced and uncoordinated gaits and a decrease in the sensorimotor cortex activity, as evidenced by the beam-walking and the vibrissae tests, respectively. After 30 days, the corridor test revealed hyposmia and a decreased locomotor activity in the open field. The last alteration was a depressive-like behavior, as shown by the forced swim test on days 60 and 120. According to the cylinder test, no locomotor asymmetry was observed over time with any BSSG concentrations tested. Also, a mesencephalic TH(+) cell loss (p < 0.05) was shown on day 30 when compared with the mock condition, and such a loss was even higher on day 120. At this time, the presence of pathological α-synuclein aggregates in the mesencephalon was documented. Our results show that the stereotaxic intranigral administration of BSSG reproduces some characteristics of oral administration, such as the progression of behavioral alterations, dopaminergic neurons loss, and the presence of Lewy body-like synuclein aggregations, in less time and resources.


Assuntos
Anosmia , Depressão , Neurônios Dopaminérgicos , Transtornos Neurológicos da Marcha , Locomoção , Mesencéfalo , Neurotoxinas/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson , Córtex Sensório-Motor , Sitosteroides/farmacologia , Animais , Anosmia/induzido quimicamente , Anosmia/patologia , Anosmia/fisiopatologia , Depressão/induzido quimicamente , Depressão/patologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Transtornos Neurológicos da Marcha/induzido quimicamente , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/patologia , Transtornos Neurológicos da Marcha/fisiopatologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Mesencéfalo/fisiopatologia , Neurotoxinas/administração & dosagem , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Ratos , Ratos Wistar , Córtex Sensório-Motor/fisiopatologia , Sitosteroides/administração & dosagem , Substância Negra/efeitos dos fármacos
7.
J Immunol Res ; 2020: 5907591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282962

RESUMO

Chronic consumption of ß-sitosterol-ß-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson's disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 µg BSSG/1 µL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100ß, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1ß, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1ß was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia (899.0 ± 80.20%) and reactive astrocytes (651.50 ± 11.28%) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8% (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100ß immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8% reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson's disease in BSSG intoxication.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Inflamação/etiologia , Neurotoxinas/imunologia , Sitosteroides/administração & dosagem , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Microglia/imunologia , Microglia/metabolismo , Neurotoxinas/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Substância Negra/patologia
8.
Acta Neuropathol Commun ; 8(1): 56, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321590

RESUMO

The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson's disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of ß-sitosterol ß-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 µg BSSG/µL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker ß-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using ß-galactosidase (ß-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.


Assuntos
Modelos Animais de Doenças , Degeneração Neural/patologia , Doença de Parkinson , Sitosteroides/administração & dosagem , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Injeções Intraventriculares/métodos , Degeneração Neural/induzido quimicamente , Ratos , Ratos Wistar , Sitosteroides/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA