Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(1): 86-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844327

RESUMO

By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Variação Genética/genética , Ensaios de Triagem em Larga Escala/métodos , Imunofenotipagem/métodos , Infecções por Salmonella/imunologia , Animais , Citrobacter/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Salmonella/imunologia , Infecções por Salmonella/microbiologia
2.
Nat Immunol ; 17(2): 204-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726811

RESUMO

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Adjuvantes Imunológicos , Adolescente , Adulto , Fatores Etários , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Análise por Conglomerados , Citocinas/sangue , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fenótipo , Fatores de Tempo , Transcriptoma , Vacinação , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943978

RESUMO

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Assuntos
Imunidade Adaptativa , COVID-19 , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Imunidade Adaptativa/genética , Idoso , Linfócitos B/imunologia , COVID-19/genética , COVID-19/imunologia , Loci Gênicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , SARS-CoV-2/imunologia , Soroconversão , Linfócitos T/imunologia
5.
Diabetologia ; 63(6): 1186-1198, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248243

RESUMO

AIMS/HYPOTHESIS: Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet. METHODS: In the clinical trial conducted by Type 1 Diabetes TrialNet, participants were immunised with 20 µg GAD-alum (twice or three times) or alum alone and peripheral blood mononuclear cell samples were banked at baseline and post treatment. In the present study, GAD-specific T cell responses were measured in these samples and GAD-specific T cell lines and clones were generated, which were then further characterised. RESULTS: At day 91 post immunisation, we detected GAD-specific IL-13+ CD4 T cell responses significantly more frequently in participants immunised with GAD-alum (71% and 94% treated twice or three times, respectively) compared with those immunised with alum alone (38%; p = 0.003 and p = 0.0002, respectively) accompanied by high secreted levels of IL-13, IL-4 and IL-5, confirming a GAD-specific, GAD-alum-induced Th2 response. Of note, GAD-specific, IL-13+ CD4 T cells observed after immunisation co-secreted IFN-γ, displaying a bifunctional Th1/Th2 phenotype. Single-cell transcriptome analysis identified IL13 and IFNG expression in concert with the canonical Th2 and Th1 transcription factor genes GATA3 and TBX21, respectively. T cell receptor ß-chain (TCRB) CDR3 regions of GAD-specific bifunctional T cells were identified in circulating naive and central memory CD4 T cell pools of non-immunised participants with new-onset type 1 diabetes and healthy individuals, suggesting the potential for bifunctional responses to be generated de novo by GAD-alum immunisation or via expansion from an existing public repertoire. CONCLUSIONS/INTERPRETATION: GAD-alum immunisation activates and propagates GAD-specific CD4 T cells with a distinctive bifunctional phenotype, the functional analysis of which might be important in understanding therapeutic responses.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Células Th1/imunologia , Células Th2/imunologia , Linhagem Celular , Criopreservação , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
6.
Bioinformatics ; 34(13): 2245-2253, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462241

RESUMO

Motivation: Identification of cell populations in flow cytometry is a critical part of the analysis and lays the groundwork for many applications and research discovery. The current paradigm of manual analysis is time consuming and subjective. A common goal of users is to replace manual analysis with automated methods that replicate their results. Supervised tools provide the best performance in such a use case, however they require fine parameterization to obtain the best results. Hence, there is a strong need for methods that are fast to setup, accurate and interpretable. Results: flowLearn is a semi-supervised approach for the quality-checked identification of cell populations. Using a very small number of manually gated samples, through density alignments it is able to predict gates on other samples with high accuracy and speed. On two state-of-the-art datasets, our tool achieves median(F1)-measures exceeding 0.99 for 31%, and 0.90 for 80% of all analyzed populations. Furthermore, users can directly interpret and adjust automated gates on new sample files to iteratively improve the initial training. Availability and implementation: FlowLearn is available as an R package on https://github.com/mlux86/flowLearn. Evaluation data is publicly available online. Details can be found in the Supplementary Material. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo/métodos , Software
7.
Methods ; 134-135: 164-176, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287915

RESUMO

The rapid expansion of flow cytometry applications has outpaced the functionality of traditional manual analysis tools used to interpret flow cytometry data. Scientists are faced with the daunting prospect of manually identifying interesting cell populations in 50-dimensional datasets, equalling the complexity previously only reached in mass cytometry. Data can no longer be analyzed or interpreted fully by manual approaches. While automated gating has been the focus of intense efforts, there are many significant additional steps to the analytical pipeline (e.g., cleaning the raw files, event outlier detection, extracting immunophenotypes). We review the components of a customized automated analysis pipeline that can be generally applied to large scale flow cytometry data. We demonstrate these methodologies on data collected by the International Mouse Phenotyping Consortium (IMPC).


Assuntos
Biologia Computacional , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Algoritmos , Animais , Citometria de Fluxo/estatística & dados numéricos , Humanos , Imunofenotipagem/estatística & dados numéricos , Camundongos , Software
8.
Blood ; 127(26): 3387-97, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27121473

RESUMO

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.


Assuntos
Reparo do DNA , Genoma Humano , Instabilidade Genômica , Síndrome de Sézary/genética , Sobrevivência Celular/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Sézary/metabolismo , Transdução de Sinais/genética
9.
Mol Biol Evol ; 31(12): 3240-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25172960

RESUMO

Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a-Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader-Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice.


Assuntos
Hipotálamo/metabolismo , Síndrome de Prader-Willi/genética , Animais , Feminino , Deriva Genética , Impressão Genômica , Masculino , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Comportamento Sexual Animal , Transcriptoma
10.
PLoS Genet ; 8(8): e1002891, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956910

RESUMO

General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus) is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP) typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1), homologues of human genes involved in adaptations (e.g. alpha-amylase genes) or in genetic diseases (e.g. Huntingtin and Parkin). Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice may also have a natural origin.


Assuntos
Genética Populacional , Haplótipos/genética , Seleção Genética , Alelos , Animais , Especiação Genética , Genoma , Genômica , Humanos , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
11.
Ginekol Pol ; 85(7): 494-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25118499

RESUMO

INTRODUCTION: Important role is attributed to genetic polymorphisms influencing enzymatic activity in folate metabolism. These inherited genetic variants may influence fetal growth and fetal hypotrophy development. The aim of the study was to investigate the connection of 401A>G polymorphism of methyleneterahydrofolate dehydrogenase gene (MTHFD1) with increased risk of fetal hypotrophy. MATERIAL AND METHODS: To the study group 120 women who delivered children with fetal hypotrophy and to the control group 120 healthy women were enrolled. Study group was divided into subgroups according to gestational age at delivery (52 patients < 37 weeks, 68 patients > or = 37 weeks) and to the neonatal weight (31 mothers of newborns with birth weight < 1500 g, 89 mothers of newborns with birth weight > or = 1500 g). The genetic analysis was performed with the use of PCR/RFLP method. RESULTS: We observed statistically higher occurrence of mutated 401A allele in hypotrophy group (401A: 27,1 vs. 18,8%, OR = 1,61, p = 0,02). At mothers who delivered hypotrophic children weighted more than 1500 g the presence of 401A allele was higher (28,7 vs. 18,8%, OR = 1,74, p = 0,01). Additionally in mothers who delivered hypotrophic children before 37 gestational week statistically higher frequency of 401A allele has been noted (31,7 vs. 18,8%, OR = 2,01, p = 0,007). CONCLUSIONS: Our results indicated that mutated 401A allele of MTHFD1 gene is essential risk factor of fetal hypotrophy in population of Polish women. Appropriate folate supplementation could be particularly essential in women carriers the genetic polymorphism influencing the folate metabolism.


Assuntos
Peso ao Nascer/genética , Retardo do Crescimento Fetal/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Mutação , Polimorfismo Genético , Adulto , Feminino , Desenvolvimento Fetal/genética , Ácido Fólico/metabolismo , Frequência do Gene , Genótipo , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor , Gravidez
12.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787962

RESUMO

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Assuntos
Imunodeficiência Combinada Severa , Recombinação V(D)J , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Animais , Camundongos , Recombinação V(D)J/imunologia , Recombinação V(D)J/genética , Masculino , Feminino , Lactente , Linfócitos B/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Linfócitos T/imunologia , Pré-Escolar , Mutação de Sentido Incorreto
13.
Children (Basel) ; 10(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37892306

RESUMO

Background: Noonan syndrome (NS) represents a fairly common genetic disorder with a highly variable phenotype. Its features include inherited heart defects, characteristic facial features, short stature, and mild retardation of motor skills. Case presentation: A 16-year-old Caucasian girl with NS reported visual deterioration, photophobia, and pain in the right eye (RE). The initial best-corrected visual acuity (BCVA) was 0.3 in the RE. An examination demonstrated conjunctival and ciliary body hyperemia, keratic precipitates, and flare in the anterior chamber. In addition, post-hemorrhagic floaters, tortuous vessels, and an epiretinal membrane in the RE were present. Diagnosis of unilateral anterior uveitis was made, and this resolved after the use of topical steroids and cycloplegic drops. Due to the presence of retinal telangiectasias and extraocular exudates (consistent with Coats' disease (CD) stage 2A) in the RE, laser therapy was performed. The patient remains under constant follow-up, and after one year, the BCVA in the RE was 0.7. Conclusions: Here, we report the clinical characteristics, genetic findings, and retinal imaging results of a patient with NS. To our knowledge, this is, to date, the first report of an association of NS with a PTPN11 mutation with anterior uveitis and CD.

14.
Pharmaceutics ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276493

RESUMO

Neurotrophic keratopathy is a corneal disease characterized by impaired corneal innervation. It can lead to corneal epithelial defects, ulcerations, and perforations. Topical insulin has been shown to be effective in treating this disorder. Insulin is a growth factor that can promote corneal epithelial cell proliferation and migration. In addition, it can also inhibit corneal epithelial cell apoptosis. Topical insulin has previously been found to enhance corneal wound healing. This article reviews the current understanding of the mechanism of action of topical insulin in the treatment of neurotrophic keratopathy.

15.
BMC Bioinformatics ; 13: 56, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22507266

RESUMO

BACKGROUND: Hybridization differences caused by target sequence differences can be a confounding factor in analyzing gene expression on microarrays, lead to false positives and reduce power to detect real expression differences. We prepared an R Bioconductor compatible package to detect, characterize and remove such probes in Affymetrix 3'IVT and exon-based arrays on the basis of correlation of signal intensities from probes within probe sets. RESULTS: Using completely mouse genomes we determined type 1 (false negatives) and type 2 (false positives) errors with high accuracy and we show that our method routinely outperforms previous methods. When detecting 76.2% of known SNP/indels in mouse expression data, we obtain at most 5.5% false positives. At the same level of false positives, best previous method detected 72.6%. We also show that probes with differing binding affinity both hinder differential expression detection and introduce artifacts in cancer-healthy tissue comparison. CONCLUSIONS: Detection and removal of such probes should be a routine step in Affymetrix data preprocessing. We prepared a user friendly R package, compatible with Bioconductor, that allows the filtering and improving of data from Affymetrix microarrays experiments.


Assuntos
Processamento Eletrônico de Dados/métodos , Perfilação da Expressão Gênica/métodos , Sondas de Ácido Nucleico/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Animais , Artefatos , Biologia Computacional/métodos , Humanos , Mutação INDEL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Polimorfismo de Nucleotídeo Único
16.
Proc Natl Acad Sci U S A ; 106(14): 5743-8, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307592

RESUMO

In development, timing is of the utmost importance, and the timing of developmental processes often changes as organisms evolve. In human evolution, developmental retardation, or neoteny, has been proposed as a possible mechanism that contributed to the rise of many human-specific features, including an increase in brain size and the emergence of human-specific cognitive traits. We analyzed mRNA expression in the prefrontal cortex of humans, chimpanzees, and rhesus macaques to determine whether human-specific neotenic changes are present at the gene expression level. We show that the brain transcriptome is dramatically remodeled during postnatal development and that developmental changes in the human brain are indeed delayed relative to other primates. This delay is not uniform across the human transcriptome but affects a specific subset of genes that play a potential role in neural development.


Assuntos
Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Perfilação da Expressão Gênica , Humanos , Macaca mulatta , Pan troglodytes , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/análise , Especificidade da Espécie
17.
Diabetes ; 71(4): 722-732, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073398

RESUMO

Type 1 diabetes is characterized by a loss of tolerance to pancreatic ß-cell autoantigens and defects in regulatory T-cell (Treg) function. In preclinical models, immunotherapy with MHC-selective, autoantigenic peptides restores immune tolerance, prevents diabetes, and shows greater potency when multiple peptides are used. To translate this strategy into the clinical setting, we administered a mixture of six HLA-DRB1*0401-selective, ß-cell peptides intradermally to patients with recent-onset type 1 diabetes possessing this genotype in a randomized placebo-controlled study at monthly doses of 10, 100, and 500 µg for 24 weeks. Stimulated C-peptide (measuring insulin functional reserve) had declined in all placebo subjects at 24 weeks but was maintained at ≥100% baseline levels in one-half of the treated group. Treatment was accompanied by significant changes in islet-specific immune responses and a dose-dependent increase in Treg expression of the canonical transcription factor FOXP3 and changes in Treg gene expression. In this first-in-human study, multiple-peptide immunotherapy shows promise as a strategy to correct immune regulatory defects fundamental to the pathobiology of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Autoantígenos , Diabetes Mellitus Tipo 1/genética , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Peptídeos/uso terapêutico , Linfócitos T Reguladores
18.
Nat Genet ; 54(6): 817-826, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618845

RESUMO

During activation, T cells undergo extensive gene expression changes that shape the properties of cells to exert their effector function. Understanding the regulation of this process could help explain how genetic variants predispose to immune diseases. Here, we mapped genetic effects on gene expression (expression quantitative trait loci (eQTLs)) using single-cell transcriptomics. We profiled 655,349 CD4+ T cells, capturing transcriptional states of unstimulated cells and three time points of cell activation in 119 healthy individuals. This identified 38 cell clusters, including transient clusters that were only present at individual time points of activation. We found 6,407 genes whose expression was correlated with genetic variation, of which 2,265 (35%) were dynamically regulated during activation. Furthermore, 127 genes were regulated by variants associated with immune-mediated diseases, with significant enrichment for dynamic effects. Our results emphasize the importance of studying context-specific gene expression regulation and provide insights into the mechanisms underlying genetic susceptibility to immune-mediated diseases.


Assuntos
Doenças do Sistema Imunitário , Locos de Características Quantitativas , Linfócitos T CD4-Positivos , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doenças do Sistema Imunitário/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Transcriptoma
19.
Cell Genom ; 2(4): None, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35591976

RESUMO

Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL]) of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63 targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression modulation and dysregulation of Treg cell function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA