Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(26): e2310414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294968

RESUMO

As opposed to natural photosynthesis, a significant challenge in a semiconductor-based photocatalyst is the limited hole extraction efficiency, which adversely affects solar-to-fuel efficiency. Recent studies have demonstrated that photocatalysts featuring spatially isolated dual catalytic oxidation/reduction sites can yield enhanced hole extraction efficiencies. However, the decay dynamics of excited states in such photocatalysts have not been explored. Here a ternary barbell-shaped CdS/MoS2/Cu2S heterostructure is prepared, comprising CdS nanorods (NRs) interfaced with MoS2 nanosheets at both ends and Cu2S nanoparticles on the sidewall. By using transient absorption (TA) spectra, highly efficient charge separation within the CdS/MoS2/Cu2S heterostructure are identified. This is achieved through directed electron transfer to the MoS2 tips at a rate constant of >8.3 × 109 s-1 and rapid hole transfer to the Cu2S nanoparticles on the sidewall at a rate of >6.1 × 1010 s-1, leading to an exceptional overall charge transfer constant of 2.3 × 1011 s-1 in CdS/MoS2/Cu2S. The enhanced hole transfer efficiency results in a remarkably prolonged charge-separated state, facilitating efficient electron accumulation within the MoS2 tips. Consequently, the ternary CdS/MoS2/Cu2S heterostructure demonstrates a 22-fold enhancement in visible-light-driven H2 generation compare to pure CdS nanorods. This work highlights the significance of efficient hole extraction in enhancing the solar-to-H2 performance of semiconductor-based heterostructure.

2.
Angew Chem Int Ed Engl ; 62(13): e202218460, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36749548

RESUMO

Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 µmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.

3.
Proc Natl Acad Sci U S A ; 116(38): 18827-18833, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484775

RESUMO

The exposed active sites of semiconductor catalysts are essential to the photocatalytic energy conversion efficiency. However, it is difficult to directly observe such active sites and understand the photogenerated electron/hole pairs' dynamics on a single catalyst particle. Here, we applied a quasi-total internal reflection fluorescence microscopy and laser-scanning confocal microscopy to identify the photocatalytic active sites at a single-molecule level and visualized the photogenerated hole-electron pair dynamics on a single TiO2 particle, the most widely used photocatalyst. The experimental results and density functional theory calculations reveal that holes and electrons tend to reach and react at the same surface sites, i.e., crystal edge/corner, within a single anatase TiO2 particle owing to the highly exposed (001) and (101) facets. The observation provides solid proof for the existence of the surface junction "edge or corner" on single TiO2 particles. These findings also offer insights into the nature of the photocatalytic active sites and imply an activity-based strategy for rationally engineering catalysts for improved photocatalysis, which can be also applied for other catalytic materials.

4.
Mikrochim Acta ; 188(10): 320, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480212

RESUMO

The gradual emissions of tetrabromobisphenol A (TBBPA) from the primitive recycling of E-waste create human health threats, which urgently require to develop an efficient, rapid yet simple detection method. The present study conducts a highly sensitive molecularly imprinted photoelectrochemical sensor (MIPES) containing molecularly imprinted (MI)-TiO2, Au, and reduced graphene oxide for the trace detection of TBBPA in indoor dust and surface water from an E-waste recycling area. The photocurrent response is used to evaluate the sensing performance of the MIPES toward TBBPA detection. The working potential for amperometry is 0.48 V. The wavelength range for photoelectrochemical detection is 320-780 nm. The sensor shows a detection range of 1.68 to 100 nM with a low limit of detection of 0.51 nM (LOD = 3 sb/S) and a limit of quantification of 1.68 nM (LOQ = 3.3 LOD). In addition, the MIPES sensor exhibits rapid, excellent reproducibility, selectivity, and long-term stability toward TBBPA detection. The relative standard deviation of three measurements for real samples is less than 7.0%, and the recovery range is 90.0-115%. The surface of molecular imprinting contributes to the high charge separation and sensing photocurrent response of TBBPA, which is confirmed by single-particle photoluminescence spectroscopy. The present study provides a new facile sensor with highly sensitive yet rapid response to detect environmental pollutants in E-waste by using the MIPES.


Assuntos
Técnicas Eletroquímicas/métodos , Bifenil Polibromatos/análise , Titânio/química , Poluentes Químicos da Água/análise , Água Potável/análise , Poeira/análise , Grafite/química , Limite de Detecção , Impressão Molecular , Processos Fotoquímicos , Reprodutibilidade dos Testes , Águas Residuárias/análise
5.
Chemistry ; 21(24): 8706-10, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25906837

RESUMO

A series of amorphous silver silicates with different compositions were synthesized for the first time by one-step co-precipitation. Silicate ions were found to have important role on determining visible light absorption and photocatalytic activities of amorphous silver silicates, and the sample with Ag/Si ratio of 3.20 exhibits optimal photocatalytic activity.

6.
Phys Chem Chem Phys ; 16(7): 2758-74, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398865

RESUMO

Photocatalysis has attracted a lot of attention owing to its great potential to solving energy and environmental problems. Although great efforts have been made in the last few decades, the poor efficiency still fails to meet the requirement of practical applications. With the aim to improve further the photocatalytic efficiency and promote their practical applications, in this work we reviewed briefly the progress of the strategies on extending the light absorption spectra of photocatalysts from the aspect of solar energy harvesting. Based on the analyses and discussions of photocatalytic performances, and the mechanisms, advantages and disadvantages of these strategies, some perspectives and interpretations of the future development of photocatalysis were proposed based on our own understanding and experience. We hope it will be helpful for our colleagues that work in the field of photocatalysis.

7.
Mater Horiz ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139133

RESUMO

Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.

8.
Nanoscale ; 16(18): 9029-9035, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38629997

RESUMO

Precise monitoring and quantification of H2O2 is highly urgent and of great significance for biomedicine, food safety, environmental monitoring, etc. Herein, we proposed a facile near-infrared (NIR) excited fluorescent probe composed of upconversion nanoparticles (UCNPs) and non-metallic plasmonic WO3-x for ultrasensitive quantitative H2O2 detection. Plasmonic WO3-x with oxygen vacancy-induced LSPR achieved over 680-fold enhancement of upconversion fluorescence at 520 nm, and also acts as the sensitive recognition site for H2O2. H2O2 quenched the LSPR band of plasmonic WO3-x, further significantly influencing adjacent fluorescence signals depending on its concentration. The probe exhibits a good linear response to H2O2 with a low detection limit (10-9 M) and a wide concentration range (0-50 µM), and shows satisfactory application in the determination of H2O2 in blood and milk. This work may provide new ideas for the development of non-invasive fluorescent nanoprobes and plasmon-assisted biochemical detection methods.

9.
J Colloid Interface Sci ; 664: 809-815, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492382

RESUMO

Solar hydrobromic acid (HBr) splitting using perovskite photocatalysts provides an attractive avenue to store solar energy into hydrogen (H2) and bromine (Br2), while an efficient photocatalytic system is still demanded. As for the semiconductor photocatalyst, formamidinium perovskites show some superiorities in structural stability, light adsorption and charge dynamics compared to their methylammonium counterparts, which are fitter for the photocatalysis process. Herein, the composite of formamidinium lead bromide perovskite (FAPbBr3) with reduced graphene oxide (rGO) is prepared using a facile photoreduction method. Under simulated sunlight irradiation (AM1.5G, 100 mW cm-2), this FAPbBr3/rGO composite (100 mg) demonstrates a noteworthy enhancement in photocatalytic H2 evolution activity of 386.7 µmol h-1, and it exhibits a notable stability with no significant decrease after 50 h of repeated tests. The single particle PL (photoluminescence) microscope is employed to study the charge dynamics, revealing that rGO in the composite effectively promotes the carrier separation. This work provides a highly efficient and stable photocatalyst for HBr splitting, and offers an effective modification strategy on lead bromide perovskites.

10.
Adv Mater ; 36(30): e2404738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695468

RESUMO

Plasmonic semiconductors with broad spectral response hold significant promise for sustainable solar energy utilization. However, the surface inertness limits the photocatalytic activity. Herein, a novel approach is proposed to improve the body crystallinity and increase the surface oxygen vacancies of plasmonic tungsten oxide by the combination of hydrochloric acid (HCl) regulation and light irradiation, which can promote the adsorption of tert-butyl alcohol (TBA) on plasmonic tungsten oxide and overcome the hindrance of the surface depletion layer in photocatalytic alcohol dehydration. Additionally, this process can concentrate electrons for strong plasmonic electron oscillation on the near surface, facilitating rapid electron transfer within the adsorbed TBA molecules for C-O bond cleavage. As a result, the activation barrier for TBA dehydration is significantly reduced by 93% to 6.0 kJ mol-1, much lower than that of thermocatalysis (91 kJ mol-1). Therefore, an optimal isobutylene generation rate of 1.8 mol g-1 h-1 (selectivity of 99.9%) is achieved. A small flow reaction system is further constructed, which shows an isobutylene generation rate of 12 mmol h-1 under natural sunlight irradiation. This work highlights the potential of plasmonic semiconductors for efficient photocatalytic alcohol dehydration, thereby promoting the sustainable utilization of solar energy.

11.
Light Sci Appl ; 12(1): 76, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944614

RESUMO

Hydrogen energy is a zero-carbon replacement for fossil fuels. However, hydrogen is highly flammable and explosive hence timely sensitive leak detection is crucial. Existing optical sensing techniques rely on complex instruments, while electrical sensing techniques usually operate at high temperatures and biasing condition. In this paper an on-chip plasmonic-catalytic hydrogen sensing concept with a concentration detection limit down to 1 ppm is presented that is based on a metal-insulator-semiconductor (MIS) nanojunction operating at room temperature and zero bias. The sensing signal of the device was enhanced by three orders of magnitude at a one-order of magnitude higher response speed compared to alternative non-plasmonic devices. The excellent performance is attributed to the hydrogen induced interfacial dipole charge layer and the associated plasmonic hot electron modulated photoelectric response. Excellent agreements were achieved between experiment and theoretical calculations based on a quantum tunneling model. Such an on-chip combination of plasmonic optics, photoelectric detection and photocatalysis offers promising strategies for next-generation optical gas sensors that require high sensitivity, low time delay, low cost, high portability and flexibility.

12.
Chemistry ; 18(50): 16090-6, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23090837

RESUMO

A novel 3D AgCl hierarchical superstructure, with fast growth along the 〈111〉 directions of cubic seeds, is synthesized by using a wet chemical oxidation method. The morphological structures and the growth process are investigated by scanning electron microscopy and X-ray diffraction. The crystal structures are analyzed by their crystallographic orientations. The surface energy of AgCl facets {100}, {110}, and {111} with absorbance of Cl(-) ions is studied by density functional theory calculations. Based on the experimental and computational results, a plausible mechanism is proposed to illustrate the formation of the 3D AgCl hierarchical superstructures. With more active sites, the photocatalytic activity of the 3D AgCl hierarchical superstructures is better than those of concave and cubic ones in oxygen evolution under irradiation by visible light.

13.
Nat Commun ; 13(1): 6984, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379947

RESUMO

Plasmonic hot carriers have the advantage of focusing, amplifying, and manipulating optical signals via electron oscillations which offers a feasible pathway to influence catalytic reactions. However, the contribution of nonmetallic hot carriers and thermal effects on the overall reactions are still unclear, and developing methods to enhance the efficiency of the catalysis is critical. Herein, we proposed a new strategy for flexibly modulating the hot electrons using a nonmetallic plasmonic heterostructure (named W18O49-nanowires/reduced-graphene-oxides) for isopropanol dehydration where the reaction rate was 180-fold greater than the corresponding thermocatalytic pathway. The key detail to this strategy lies in the synergetic utilization of ultraviolet light and visible-near-infrared light to enhance the hot electron generation and promote electron transfer for C-O bond cleavage during isopropanol dehydration reaction. This, in turn, results in a reduced reaction activation barrier down to 0.37 eV (compared to 1.0 eV of thermocatalysis) and a significantly improved conversion efficiency of 100% propylene from isopropanol. This work provides an additional strategy to modulate hot carrier of plasmonic semiconductors and helps guide the design of better catalytic materials and chemistries.


Assuntos
2-Propanol , Desidratação , Humanos , Luz , Catálise , Semicondutores
14.
Nanoscale ; 14(14): 5561-5568, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343993

RESUMO

Surface-enhanced Raman scattering (SERS) is a promising detection technique providing outstanding molecular fingerprint identification and high sensitivity of analytes. Developing sensitive and stable SERS substrates is highly desirable but remains a challenge. We herein report a wet-chemistry approach for the preparation of (Au nanorod core)@(Zr-based metal-organic framework shell) (Au nanorod@Zr-MOF) nanostructures with the Zr-MOF shell thickness ranging from 3 nm to 90 nm. The stacked Au nanorod@Zr-MOF composites exhibit remarkably improved SERS sensitivity because the MOF shell enriches the molecules to the abundant plasmonic hotspots between the Au nanorod cores. The optimized Au nanorod@Zr-MOF structures exhibit superior SERS activity for detecting 4'-mercaptobiphenylcarbonitrile molecules at a concentration as low as 2 × 10-10 M, with the SERS enhancement factor 2 and 8 times as high as that of ordered bare Au nanorod arrays and random stacking bare Au nanorods, respectively. This study enriches the library of hybrid nanostructures of plasmonic nanocrystals and MOFs, providing an integrated SERS platform with molecular enrichment capability for the realization of sensitive and quantitative analyte identification.

15.
Fundam Res ; 2(1): 59-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933914

RESUMO

Carbon nanotubes (CNTs) have exhibited immense potential for applications in biology and medicine, and once their intended purpose is fulfilled, the elimination of residual CNTs is essential to avoid negative effects. In this study, we demonstrated the effective collection and simple removal of CNTs dispersed in a suspension via thermal convection. First, a tapered fiber tip with a cone angle and end diameter of 10° and 3 µm, respectively, was fabricated via a heating and pulling method. Further, a laser beam with a power and wavelength of 100 mW and 1.55 µm, respectively, was launched into the tapered fiber tip, which was placed in a CNT suspension, resulting in the formation of a microbubble on the fiber tip. The temperature gradient on the microbubble and suspension surface induced thermal convection in the suspension, which resulted in the accumulation of CNTs on the fiber tip. The experimentally formed CNT cluster possessed a circular top surface with a diameter of 87 µm and an arched cross-section with a height of 19 µm. Furthermore, this CNT cluster was firmly attached to the fiber tip. Therefore, the removal of CNT clusters can be realized by simply removing the fiber tip from the suspension. Moreover, we simulated the thermal convection that caused CNT aggregation. The obtained results indicate that convection near the fiber tip flows toward it, which pushes the CNTs toward the fiber tip and enables their attachment to it. Further, the flow velocity is symmetrically distributed as a Gaussian function, which results in the formation of a circular top surface and arched cross-sectional profile for the CNT cluster. Our method may be applied in biomedicine for the collection and removal of nano-drug residues.

16.
ACS Appl Mater Interfaces ; 13(8): 10047-10053, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617225

RESUMO

Low-cost and abundant reserved nonmetallic plasmonic materials have been regarded as a promising substitute of noble metals for photocatalysis and surface-enhanced Raman scattering (SERS). In this paper, a MoS2/MoO3-x heterostructure was synthesized by light-induced in situ partial oxidation of MoS2 nanosheets, exhibiting strong surface plasmon resonance (SPR) in a vis-near-infrared (NIR) region. Continuously plasmon-induced hot electrons boost CO2 reduction to CO due to efficient photoelectron injection from MoS2 to MoO3-x. Under UV-vis-NIR irradiation, the CO generation rate reached 32.4 µmol g-1 h-1 with a selectivity of 94.1%, which was much higher than that of single MoS2 or MoO3-x. Furthermore, the plasmonic MoS2/MoO3-x heterostructure exhibits superior SERS performance for sensitive rhodamine 6G detection (10-9 M) with an enhancement factor of ∼106 because of the synergy between SPR and charge transfer effect. This work provides one novel mild synthetization of a plasmonic heterostructure and demonstrates its potential in plasmon-enhanced CO2 reduction and SERS detection.

17.
ACS Nano ; 15(2): 3529-3539, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570380

RESUMO

Plasmonic Bi2WO6 with strong localized surface plasmon resonance (LSPR) around the 500-1400 region is successfully constructed by electron doping. Oxygen vacancies on W-O-W (V1) and Bi-O-Bi (V2) sites are precisely controlled to obtain Bi2WO6-V1 with LSPR and Bi2WO6-V2 with defect absorption. Density functional theory (DFT) calculation demonstrates that the V1-induced energy state facilitates photoelectron collection for a long lifetime, resulting in LSPR of Bi2WO6. Photoelectron trapping on V1 sites is demonstrated by a single-particle photoluminescence (PL) study, and 93% PL quenching efficiency is observed. With strong LSPR, plasmonic Bi2WO6-V1 exhibits highly selective methane generation with a rate of 9.95 µmol g-1 h-1 during the CO2 reduction reaction (CO2-RR), which is 26-fold higher than 0.37 µmol g-1 h-1 of BiWO3-V2 under UV-visible light irradiation. LSPR-dependent methane generation is confirmed by various photocatalytic results of plasmonic Bi2WO6 with tunable LSPR and different light excitations. Furthermore, the DFT-simulated pathway of CO2-RR and in situ Fourier transform infrared spectra on the surface of Bi2WO6 prove that V1 sites facilitate CH4 generation. Our work provides a strategy to obtain nonmetallic plasmonic materials by electron doping.

18.
Chemistry ; 16(33): 10042-7, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20645327

RESUMO

The new plasmonic photocatalyst Ag@Ag(Br,I) was synthesized by the ion-exchange process between the silver bromide and potassium iodide, then by reducing some Ag(+) ions in the surface region of Ag(Br,I) particles to Ag(0) species. Ag nanoparticles are formed from Ag(Br,I) by the light-induced chemical reduction reaction. The Ag@Ag(Br,I) particles have irregular shapes with their sizes varying from 83 nm to 1 mum. The as-grown plasmonic photocatalyst shows strong absorption in the visible light region because of the plasmon resonance of Ag nanoparticles. The ability of this compound to reduce Cr(VI) under visible light was compared with those of other reference photocatalyst. The plasmonic photocatalyst is shown to be highly efficient under visible light. The stability of the photocatalyst was examined by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern and XPS spectra prove the stability of the plasmonic photocatalyst Ag@Ag(Br,I).

19.
Chemistry ; 16(2): 538-44, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19918815

RESUMO

By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures-including microrods, irregular balls, and hollow spheres-have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.

20.
Nanoscale Horiz ; 5(10): 1368-1377, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32608428

RESUMO

Coupling between nanostructures and excitons has attracted great attention for potential applications in quantum information technology. Compared with plasmonic platforms, all-dielectric nanostructures with Mie resonances are more practical because of low-loss, low-cost and CMOS compatibility. However, weak field enhancements in single element dielectric nanostructures hinder their applications in both strong and weak coupling regimes. The Kerker effect arising from the far-field electro-magnetic interactions in dielectric nanostructures brings a new mechanism to realize effective coupling with excitons. Until now, it still remains unsolved whether effective Mie-exciton coupling can be realized based on pure far-field Kerker effect. Therefore, we proposed a silicon-on-insulator (SOI) integrated Mie resonator with a 135 nm top oxide layer to exclude the near-field coupling between excitons and silicon (Si) nanostripes. Through tuning the widths of Si nanostripes to obtain highly directional photoluminescence (PL) emission under Kerker conditions, strong PL enhancements can be observed, whose enhancement factors are comparable to the reported best performances of single all-dielectric or even plasmonic nanostructures coupling with 2D excitons. Our findings bring new strategies for strong light-matter interactions with near-zero heating loss and make it possible to construct 2D materials-silicon hybrid integration for future nanophotonic and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA