Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Brain Mapp ; 43(8): 2582-2606, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195323

RESUMO

Socioeconomic status (SES) plays a significant role in health and disease. At the same time, early-life conditions affect neural function and structure, suggesting the brain may be a conduit for the biological embedding of SES. Here, we investigate the brain anatomy signatures of SES in a large-scale population cohort aged 45-85 years. We assess both gray matter morphometry and tissue properties indicative of myelin content. Higher life course SES is associated with increased volume in several brain regions, including postcentral and temporal gyri, cuneus, and cerebellum. We observe more widespread volume differences and higher myelin content in the sensorimotor network but lower myelin content in the temporal lobe associated with childhood SES. Crucially, childhood SES differences persisted in adult brains even after controlling for adult SES, highlighting the unique contribution of early-life conditions to brain anatomy, independent of later changes in SES. These findings inform on the biological underpinnings of social inequality, particularly as they pertain to early-life conditions.


Assuntos
Encéfalo , Acontecimentos que Mudam a Vida , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Criança , Substância Cinzenta/diagnóstico por imagem , Humanos , Classe Social , Fatores Socioeconômicos
2.
Neuroimage ; 210: 116549, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954844

RESUMO

The brain has been theorized to employ inferential processes to overcome the problem of uncertainty. Inference is thought to underlie neural processes, including in disparate domains such as value-based decision-making and perception. Value-based decision-making commonly involves deliberation, a time-consuming process that requires conscious consideration of decision variables. Perception, by contrast, is thought to be automatic and effortless. Both processes may call on a general neural system to resolve for uncertainty however. We addressed this question by directly comparing uncertainty signals in visual perception and an economic task using fMRI. We presented the same individuals with different versions of a bi-stable figure (Necker's cube) and with a gambling task during fMRI acquisition. We experimentally varied uncertainty, either on perceptual state or financial outcome. We found that inferential errors indexed by a formal account of surprise in the gambling task yielded BOLD responses in the anterior insula, in line with earlier findings. Moreover, we found perceptual uncertainty and surprise in the Necker Cube task yielded similar responses in the anterior insula. These results suggest that uncertainty, irrespective of domain, correlates to a common brain region, the anterior insula. These findings provide empirical evidence that the brain interacts with its environment through inferential processes.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Incerteza , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
3.
Curr Opin Neurol ; 28(4): 344-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26110801

RESUMO

PURPOSE OF REVIEW: Mild cognitive impairment (MCI) is a comorbid factor in Parkinson's disease. The aim of this review is to examine the recent neuroimaging findings in the search for Parkinson's disease MCI (PD-MCI) biomarkers to gain insight on whether MCI and specific cognitive deficits in Parkinson's disease implicate striatal dopamine or another system. RECENT FINDINGS: The evidence implicates a diffuse pathophysiology in PD-MCI rather than acute dopaminergic involvement. On the one hand, performance in specific cognitive domains, notably in set-shifting and learning, appears to vary with dopaminergic status. On the other hand, motivational states in Parkinson's disease along with their behavioral and physiological indices suggest a noradrenergic contribution to cognitive deficits in Parkinson's disease. Finally, Parkinson's disease's pattern of neurodegeneration offers an avenue for continued research in nigrostriatal dopamine's role in distinct behaviors, as well as the specification of dorsal and ventral striatal functions. SUMMARY: The search for PD-MCI biomarkers has employed an array of neuroimaging techniques, but still yields divergent findings. This may be due in part to MCI's broad definition, encompassing heterogeneous cognitive domains, only some of which are affected in Parkinson's disease. Most domains falling under the MCI umbrella include fronto-dependent executive functions, whereas others, notably learning, rely on the basal ganglia. Given the deterioration of the nigrostriatal dopaminergic system in Parkinson's disease, it has been the prime target of PD-MCI investigation. By testing well defined cognitive deficits in Parkinson's disease, distinct functions can be attributed to specific neural systems, overcoming conflicting results on PD-MCI. Apart from dopamine, other systems such as the neurovascular or noradrenergic systems are affected in Parkinson's disease. These factors may be at the basis of specific facets of PD-MCI for which dopaminergic involvement has not been conclusive. Finally, the impact of both dopaminergic and noradrenergic deficiency on motivational states in Parkinson's disease is examined in light of a plausible link between apathy and cognitive deficits.


Assuntos
Apatia/fisiologia , Encéfalo/metabolismo , Disfunção Cognitiva/complicações , Norepinefrina/metabolismo , Doença de Parkinson/complicações , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia
4.
Sci Rep ; 13(1): 9727, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322248

RESUMO

Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via the vestibular system, informing their decisions and possibly their integration of uncertainty. What happens when such a strong prior is altered? We address this question using a self-motion estimation task in a space analog environment under conditions of altered gravity. Two participants were cast as remote drone operators orbiting Mars in a virtual reality environment on board a parabolic flight, where both hyper- and microgravity conditions were induced. From a first-person perspective, participants viewed a drone exiting a cave and had to first predict a collision and then provide a confidence estimate of their response. We evoked uncertainty in the task by manipulating the motion's trajectory angle. Post-decision subjective confidence reports were negatively predicted by stimulus uncertainty, as expected. Uncertainty alone did not impact overt behavioral responses (performance, choice) differentially across gravity conditions. However microgravity predicted higher subjective confidence, especially in interaction with stimulus uncertainty. These results suggest that variables relating to uncertainty affect decision-making distinctly in microgravity, highlighting the possible need for automatized, compensatory mechanisms when considering human factors in space research.


Assuntos
Gravidade Alterada , Voo Espacial , Ausência de Peso , Humanos , Teorema de Bayes , Incerteza , Encéfalo
5.
Eur J Pain ; 26(5): 1163-1175, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290697

RESUMO

BACKGROUND: Estimating others' pain is a challenging inferential process, associated with a high degree of uncertainty. While much is known about uncertainty's effect on self-regarding actions, its impact on other-regarding decisions for pain have yet to be characterized. AIM: The present study exploited models of probabilistic decision-making to investigate how uncertainty influences the valuation and assessment of another's pain. MATERIALS & METHODS: We engaged 63 dyads (43 strangers and 20 romantic couples) in a task where individual choices affected the pain delivered to either oneself (the agent) or the other member of the dyad. At each trial, agents were presented with cues predicting a given pain intensity with an associated probability of occurrence. Agents either chose a sure (mild decrease of pain) or risky (50% chance of avoiding pain altogether) management option, before bidding on their choice. A heat stimulation was then issued to the target (self or other). Decision-makers were then asked to rate the pain administered to the target. RESULTS: We found that the higher the expected pain, the more risk-averse agents became, in line with findings in value-based decision-making. Furthermore, agents gambled less on another individual's pain (especially strangers) and placed higher bids on pain relief than they did for themselves. Most critically, the uncertainty associated with expected pain dampened ratings made for strangers' pain. This contrasted with the effect on an agent's own pain, for which risk had a marginal hyperalgesic effect. DISCUSSION & CONCLUSION: Overall, our results suggested that risk selectively affects decision-making on a stranger's suffering, both at the level of assessment and treatment selection, by (1) leading to underestimation, (2) privileging sure options and (3) altruistically allocating more money to insure the treatment's success. SIGNIFICANCE: Uncertainty biases decision-making but it is unclear if it affects choice behavior on pain for others. In examining this question, we found individuals were generally risk-seeking when faced with looming pain, but more so for self; and assigned higher monetary values and subjective ratings on another's pain. However, uncertainty dampened agents' assessment of a stranger's pain, suggesting latent variables may contradict overt altruism. This bias may underlie pain underestimation in clinical settings.


Assuntos
Altruísmo , Tomada de Decisões , Tomada de Decisões/fisiologia , Humanos , Dor , Incerteza
6.
Neurobiol Aging ; 102: 50-63, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765431

RESUMO

Given the controversy about the impact of modifiable risk factors on mood and cognition in ageing, we sought to investigate the associations between cardio-vascular risk, mental health, cognitive performance and brain anatomy in mid- to old age. We analyzed a set of risk factors together with multi-parameter magnetic resonance imaging (MRI) in the CoLaus|PsyCoLaus cohort (n > 1200). Cardio-vascular risk was associated with differences in brain tissue properties - myelin, free tissue water, iron content - and regional brain volumes that we interpret in the context of micro-vascular hypoxic lesions and neurodegeneration. The interaction between clinical subtypes of major depressive disorder and cardio-vascular risk factors showed differential associations with brain structure depending on individuals' lifetime trajectory. There was a negative correlation between melancholic depression, anxiety and MRI markers of myelin and iron content in the hippocampus and anterior cingulate. Verbal memory and verbal fluency performance were positively correlated with left amygdala volumes. The concomitant analysis of brain morphometry and tissue properties allowed for a neuro-biological interpretation of the link between modifiable risk factors and brain health.


Assuntos
Afeto , Envelhecimento/patologia , Envelhecimento/psicologia , Encéfalo/patologia , Cognição , Fatores de Risco de Doenças Cardíacas , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Coortes , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/patologia , Feminino , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Degeneração Neural , Fatores de Risco
7.
Neuropsychologia ; 149: 107654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069790

RESUMO

The temporo-parietal junction (TPJ) consistently emerges in other-regarding behavior, including tasks probing affective phenomena such as morality and empathy. Yet the TPJ is also recruited in processes with no affective or social component, such as visuo-spatial processing and mathematical cognition. We present serendipitous findings from a perceptual decision-making task on a bistable stimulus, the Necker Cube, performed in an MRI scanner. The stimulus in question is a transparent, wire-frame cube that evokes spontaneous switches in perception. Individuals can view the cube from below or from above, though a consistent bias is shown towards seeing the cube from above. We replicate this bias, finding participants spend more time in the from-above percept. However, in testing for BOLD differences between percept orientations, we found robust responses in bilateral TPJ for the from-above > from-below perceptual state. We speculate that this neural response comes from the sensory incongruence of viewing an object from above while lying supine in the scanner. We further speculate that the TPJ resolves this incongruence by facilitating an egocentric projection. Such a function would explain the TPJ's ubiquitous response to other-regarding, visuo-spatial and mathematical cognition, as all these phenomena demand an ability to ambulate through the coordinate space. Our findings suggest the TPJ may not play a specific role in social or moral components of other-regarding behavior, such as altruism, and further indirectly suggest that "pure", allocentric altruism may not correlate with the TPJ. Results further have implications on how the TPJ may be modulated by activities such as flight or drone operation. Finally, this study highlights the possible need for congruence between stimuli and body position in neuroimaging studies.


Assuntos
Imageamento por Ressonância Magnética , Orientação , Viés , Humanos , Lobo Parietal/diagnóstico por imagem
8.
Front Artif Intell ; 3: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733125

RESUMO

Uncertainty presents a problem for both human and machine decision-making. While utility maximization has traditionally been viewed as the motive force behind choice behavior, it has been theorized that uncertainty minimization may supersede reward motivation. Beyond reward, decisions are guided by belief, i.e., confidence-weighted expectations. Evidence challenging a belief evokes surprise, which signals a deviation from expectation (stimulus-bound surprise) but also provides an information gain. To support the theory that uncertainty minimization is an essential drive for the brain, we probe the neural trace of uncertainty-related decision variables, namely confidence, surprise, and information gain, in a discrete decision with a deterministic outcome. Confidence and surprise were elicited with a gambling task administered in a functional magnetic resonance imaging experiment, where agents start with a uniform probability distribution, transition to a non-uniform probabilistic state, and end in a fully certain state. After controlling for reward expectation, we find confidence, taken as the negative entropy of a trial, correlates with a response in the hippocampus and temporal lobe. Stimulus-bound surprise, taken as Shannon information, correlates with responses in the insula and striatum. In addition, we also find a neural response to a measure of information gain captured by a confidence error, a quantity we dub accuracy. BOLD responses to accuracy were found in the cerebellum and precuneus, after controlling for reward prediction errors and stimulus-bound surprise at the same time point. Our results suggest that, even absent an overt need for learning, the human brain expends energy on information gain and uncertainty minimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA