Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7861): 57-61, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079133

RESUMO

If a bulk material can withstand a high load without any irreversible damage (such as plastic deformation), it is usually brittle and can fail catastrophically1,2. This trade-off between strength and fracture toughness also extends into two-dimensional materials space3-5. For example, graphene has ultrahigh intrinsic strength (about 130 gigapascals) and elastic modulus (approximately 1.0 terapascal) but is brittle, with low fracture toughness (about 4 megapascals per square-root metre)3,6. Hexagonal boron nitride (h-BN) is a dielectric two-dimensional material7 with high strength (about 100 gigapascals) and elastic modulus (approximately 0.8 terapascals), which are similar to those of graphene8. Its fracture behaviour has long been assumed to be similarly brittle, subject to Griffith's law9-14. Contrary to expectation, here we report high fracture toughness of single-crystal monolayer h-BN, with an effective energy release rate up to one order of magnitude higher than both its Griffith energy release rate and that reported for graphene. We observe stable crack propagation in monolayer h-BN, and obtain the corresponding crack resistance curve. Crack deflection and branching occur repeatedly owing to asymmetric edge elastic properties at the crack tip and edge swapping during crack propagation, which intrinsically toughens the material and enables stable crack propagation. Our in situ experimental observations, supported by theoretical analysis, suggest added practical benefits and potential new technological opportunities for monolayer h-BN, such as adding mechanical protection to two-dimensional devices.

2.
Plant Biotechnol J ; 22(3): 738-750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921406

RESUMO

Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Melhoramento Vegetal , Brassica rapa/genética , Genômica , Mutagênese/genética , Sementes/genética , Óleos de Plantas
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762387

RESUMO

The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane's performance was impressive, manifesting in a remarkable water flux range (70 kL·m-2·h-1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF·cm-2 at a current density of 6 mA cm-2 in a 6 M KOH electrolyte, the membrane's potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications.


Assuntos
Cobre , Surfactantes Pulmonares , Capacitância Elétrica , Eletrodos , Fenótipo
4.
Proc Natl Acad Sci U S A ; 114(38): 10089-10094, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28878024

RESUMO

Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 from Arabidopsis thaliana (AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2'-deoxycytidine 5'-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Membrana Transportadoras/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desoxicitidina Monofosfato , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Relação Estrutura-Atividade
5.
Nat Mater ; 15(1): 43-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595118

RESUMO

Wafer-scale single-crystalline graphene monolayers are highly sought after as an ideal platform for electronic and other applications. At present, state-of-the-art growth methods based on chemical vapour deposition allow the synthesis of one-centimetre-sized single-crystalline graphene domains in ∼12 h, by suppressing nucleation events on the growth substrate. Here we demonstrate an efficient strategy for achieving large-area single-crystalline graphene by letting a single nucleus evolve into a monolayer at a fast rate. By locally feeding carbon precursors to a desired position of a substrate composed of an optimized Cu-Ni alloy, we synthesized an ∼1.5-inch-large graphene monolayer in 2.5 h. Localized feeding induces the formation of a single nucleus on the entire substrate, and the optimized alloy activates an isothermal segregation mechanism that greatly expedites the growth rate. This approach may also prove effective for the synthesis of wafer-scale single-crystalline monolayers of other two-dimensional materials.

6.
J Exp Bot ; 68(17): 4791-4801, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992309

RESUMO

Rapeseed (Brassica napus L.) is an important oilseed crop. Despite a short period of domestication and breeding, rapeseed has formed three diverse ecotype groups, namely spring, winter, and semi-winter. However, the genetic changes among the three ecotype groups have remained largely unknown. To detect selective signals, a set of 327 accessions from a worldwide collection were genotyped using a Brassica array, producing 33 186 high-quality single nucleotide polymorphisms (SNPs). Linkage disequilibrium (LD) was unevenly distributed across the genome. A total of 705 (78.2%) weak LD regions were found in the A subgenome, whereas 445 (72.6%) strong LD regions were in the C subgenome. By calculating the nucleotide diversity and population differentiation indices, a total of 198 selective sweeps were identified across ecotype groups, spanning 5.91% (37.9 Mb) of the genome. Within these genome regions, a few known functional genes or loci were found to be in association with environmental adaptability and yield-related traits. In particular, all 12 SNPs detected in significant association with flowering time among accessions were in the selection regions between ecotype groups. These findings provide new insights into the structure of the B. napus genome and uncover the footprints of domestication and breeding.


Assuntos
Brassica napus/genética , Ecótipo , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Domesticação , Genótipo , Melhoramento Vegetal
7.
Small ; 12(15): 2009-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915342

RESUMO

The synergic effects of Cu85Ni15 and the copper vapor evaporated from copper foil enabled the fast growth of a ≈300 µm bilayer graphene in ≈10 minutes. The copper vapor reduces the growth rate of the first graphene layer while the carbon dissolved in the alloy boosts the growth of the subsequently developed second graphene layer with an AB-stacking order.

8.
Breed Sci ; 64(1): 60-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24987291

RESUMO

Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.

9.
Plant Physiol Biochem ; 206: 108243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048701

RESUMO

Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.


Assuntos
Plântula , Vicia faba , Plântula/genética , Vicia faba/genética , Vicia faba/metabolismo , Secas , Plantas/genética , Transcriptoma
10.
Biochem Pharmacol ; 225: 116320, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801927

RESUMO

TMP269, a class IIA histone deacetylase inhibitor with selectivity, that has a protective effect on the central nervous system, yet its specific mechanism of action remains ambiguous. Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that histone deacetylase 5 plays a key role in the pathological process of depression and the fact that preclinical studies have shown HDAC5 to be a potential antidepressant target, the search for natural drugs or small molecule compounds that can target HDAC5 may be a potential therapeutic strategy for the treatment of depression. In addition, we examined the role of the Brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for neuronal survival and growth, as a potential downstream target of HDAC5. We found downward revision of HDAC5 levels in the hippocampus ameliorated depressive-like behavior in LH (Learned helplessness) mice. Furthermore, injection of HDAC5 overexpressing adenoviral vectors in the hippocampal dentate gyrus of wild-type mice produced a somewhat depressive-like phenotype. Pharmacological, immunofluorescence and biochemical experiments showed that TMP269 could produce antidepressant effects by inhibiting mouse hippocampal HDAC5 and thus modulating its downstream BDNF. Over all, TMP269 mitigated LH-induced depressive-like behaviors and abnormalities in synapse formation and neurogenesis within the hippocampus. These findings suggest potential beneficial effects of TMP269 on depression.


Assuntos
Antidepressivos , Depressão , Camundongos Endogâmicos C57BL , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Camundongos , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Comportamento Animal/efeitos dos fármacos
11.
PeerJ ; 12: e17661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978758

RESUMO

Leaf mustard (Brassica juncea L. Czern & Coss), an important vegetable crop, experiences pronounced adversity due to seasonal drought stress, particularly at the seed germination stage. Although there is partial comprehension of drought-responsive genes, the role of long non-coding RNAs (lncRNAs) in adjusting mustard's drought stress response is largely unexplored. In this study, we showed that the drought-tolerant cultivar 'Weiliang' manifested a markedly lower base water potential (-1.073 MPa vs -0.437 MPa) and higher germination percentage (41.2% vs 0%) than the drought-susceptible cultivar 'Shuidong' under drought conditions. High throughput RNA sequencing techniques revealed a significant repertoire of lncRNAs from both cultivars during germination under drought stress, resulting in the identification of 2,087 differentially expressed lncRNAs (DELs) and their correspondingly linked 12,433 target genes. It was noted that 84 genes targeted by DEL exhibited enrichment in the photosynthesis pathway. Gene network construction showed that MSTRG.150397, a regulatory lncRNA, was inferred to potentially modulate key photosynthetic genes (Psb27, PetC, PetH, and PsbW), whilst MSTRG.107159 was indicated as an inhibitory regulator of six drought-responsive PIP genes. Further, weighted gene co-expression network analysis (WGCNA) corroborated the involvement of light intensity and stress response genes targeted by the identified DELs. The precision and regulatory impact of lncRNA were verified through qPCR. This study extends our knowledge of the regulatory mechanisms governing drought stress responses in mustard, which will help strategies to augment drought tolerance in this crop.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Germinação , Mostardeira , RNA Longo não Codificante , Mostardeira/genética , Germinação/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Fisiológico/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , RNA de Plantas/genética , RNA de Plantas/metabolismo , Redes Reguladoras de Genes
12.
Int J Mol Sci ; 14(2): 2637-51, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23358252

RESUMO

Although rapeseed (Brassica napus L.) is known to be affected by waterlogging, the genetic basis of waterlogging tolerance by rapeseed is largely unknown. In this study, the transcriptome under 0 h and 12 h of waterlogging was assayed in the roots of ZS9, a tolerant variety, using digital gene expression (DGE). A total of 4432 differentially expressed genes were identified, indicating that the response to waterlogging in rapeseed is complicated. The assignments of the annotated genes based on GO (Gene Ontology) revealed there were more genes induced under waterlogging in "oxidation reduction", "secondary metabolism", "transcription regulation", and "translation regulation"; suggesting these four pathways are enhanced under waterlogging. Analysis of the 200 most highly expressed genes illustrated that 144 under normal conditions were down-regulated by waterlogging, while up to 191 under waterlogging were those induced in response to stress. The expression of genes involved under waterlogging is mediated by multiple levels of transcriptional, post-transcriptional, translational and post-translational regulation, including phosphorylation and protein degradation; in particular, protein degradation might be involved in the negative regulation in response to this stress. Our results provide new insight into the response to waterlogging and will help to identify important candidate genes.

13.
Sci Total Environ ; 868: 161598, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36646227

RESUMO

Considering the complexity of coastal and estuarine systems, a great challenge of environmental health assessment is to distinguish between natural and anthropogenically induced stress. Quantification of trace element accumulation in the tissues of sedentary bivalves with subsequent hotspot identification is important to assess the pollution status. The present study conducted a nationwide mapping of bioavailable macro- and trace elements in a widely distributed biomonitoring clam Ruditapes philippinarum from China. Ag, As, Cd, Cr, Cu, and Zn concentrations in the clams showed similar levels as those documented previously in mussels, but were lower than those in oysters at similar sites from China. Notably, the total As concentrations in clams at Xinkai Estuary and Beibu Bay were relatively higher than those at other sites in China. After normalization by tissue biomass, salinity (Na) and nutrient (P), some hotspots were identified with high pollution of trace elements at Liaodong Bay of Bohai Sea, Gold Beach of Qingdao, Dongling Port of Yellow Sea, Hangzhou Bay and adjacent coasts of East China Sea, and Pearl River Estuary and Beibu Bay of South China Sea. This study demonstrated that most trace elements had a path-dependent effect of biomass, except for Cd which showed an indirect pathway of AgNi related accumulation. Results showed significant correlations between Cd, Zn, Ag and Ni, and between Pb/Cr and Ti in clams. After mass normalization, all trace elements displayed significantly positive correlations with Na or P. Simultaneously, the clam biomass played an intermediary role in trace element accumulation in non-linear patterns related to salinity and nutrient. These results are important in evaluating the composite ambiguous information of the historical data of trace element biomonitoring.


Assuntos
Bivalves , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Cádmio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Bivalves/metabolismo , China , Metais Pesados/análise
14.
Environ Pollut ; 317: 120822, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481461

RESUMO

Cold seeps are deep-sea 'oases' with dense and dominant coexisting populations of large mussels and tubeworms under extreme environments. Under such natural source of high metal concentrations, the present study investigated the metal bioaccumulation and transfer with trophic positions in six benthic species by the isotopic δ15N and δ13C signatures in the active Haima cold seep, South China Sea. Comparing the isotopic signatures of bulk-tissue and amino acids by compound-specific isotopic analysis (CSIA-AA), we found that the bulk trophic (TPB) values in the benthos except mussels were significantly higher than those of CSIA-based TPGlu-Phe values. The estimated CSIA-based TPGlu-Phe values showed a relatively compressed food chain with much changeable and unique amino acid isotopic heterogeneity, followed slim tubeworms (1.20)

Assuntos
Bivalves , Mercúrio , Poluentes Químicos da Água , Animais , Aminoácidos , Bioacumulação , Metais/análise , Mercúrio/análise , Bivalves/química , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental
15.
Sci Rep ; 13(1): 652, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635356

RESUMO

microRNAs (miRNAs) are endogenous small RNAs that are key regulatory factors participating in various biological activities such as the signaling of phosphorus deficiency in the plant. Previous studies have shown that miR156 expression was modulated by phosphorus starvation in Arabidopsis and soybean. However, it is not clear whether the over-expression of soybean miR156b (GmmiR156b) can improve a plant's tolerance to phosphorus deficiency and affect yield component traits. In this study, we generated Arabidopsis transgenic lines overexpressing GmmiR156b and investigated the plant's response to phosphorus deficiency. Compared with the wild type, the transgenic Arabidopsis seedlings had longer primary roots and higher phosphorus contents in roots under phosphorus-deficit conditions, but lower fresh weight root/shoot ratios under either phosphorus-deficient or sufficient conditions. Moreover, the GmmiR156b overexpression transgenic lines had higher phosphorus content in shoots of adult plants and grew better than the wide type under phosphorus-deficient conditions, and exhibited increased seed yields as well as strong pleiotropic developmental morphology such as dwarfness, prolonged growth period, bushy shoot/branching, and shorter silique length, suggesting that the transgenic lines were more tolerant to phosphorus deficiency. In addition, the expression level of four SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes (i.e., AtSPL4/5/6/15) were markedly suppressed in transgenic plants, indicating that they were the main targets negatively regulated by GmmiR156b (especially AtSPL15) and that the enhanced tolerance to phosphorus deficiency and seed yield is conferred mainly by the miR156-mediated downregulation of AtSPL15.


Assuntos
Arabidopsis , Glycine max , MicroRNAs , Fósforo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/deficiência , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , Glycine max/genética , MicroRNAs/genética , RNA de Plantas/genética
16.
Environ Pollut ; 323: 121298, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804145

RESUMO

Ultraviolet absorbents (UVAs) are widely used in various industrial materials, pharmaceuticals, and personal care products, resulting in their frequent occurrences in sediment, water, and biota. However, our understanding of the spatiotemporal characteristics and long-term contamination status of UVAs is still limited. Here, a 6-year biomonitoring study with oysters during wet and dry seasons was conducted to examine the annual, seasonal, and spatial characteristics of UVAs in the Pearl River Estuary (PRE), China. The concentrations of Σ6UVA ranged from 9.1 to 119 (geometric mean ± standard deviation: 31 ± 22) ng/g dry wt. and peaked in 2018. Significant spatiotemporal variations in UVA contamination were observed. The concentrations of UVAs in oysters during the wet season were higher than the dry season, and concentrations in the more industrialized eastern coast were higher than the western coast (p < 0.05). Environmental factors, including precipitation, temperature, and salinity in water significantly impacted the UVA bioaccumulation in the oysters. The present study highlights that long-term biomonitoring with oysters provided valuable insight in the magnitude and seasonal variation of UVAs in this highly dynamic estuary.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Estuários , Rios , China , Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
17.
mSystems ; 8(2): e0117922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36927099

RESUMO

Marine sediments are important methane reservoirs. Methane efflux from the seabed is significantly restricted by anaerobic methanotrophic (ANME) archaea through a process known as anaerobic oxidation of methane (AOM). Different clades of ANME archaea occupy distinct niches in methane seeps, but their underlying molecular mechanisms still need to be fully understood. To provide genetic explanations for the niche partitioning of ANME archaea, we applied comparative genomic analysis to ANME archaeal genomes retrieved from global methane seeps. Our results showed that ANME-2 archaea are more prevalent than ANME-1 archaea in shallow sediments because they carry genes that encode a significantly higher number of outer membrane multiheme c-type cytochromes and flagellar proteins. These features make ANME-2 archaea perform direct interspecies electron transfer better and benefit more from electron acceptors in AOM. Besides, ANME-2 archaea carry genes that encode extra peroxidase compared to ANME-1 archaea, which may lead to ANME-2 archaea better tolerating oxygen toxicity. In contrast, ANME-1 archaea are more competitive in deep layers than ANME-2 archaea because they carry extra genes (mtb and mtt) for methylotrophic methanogenesis and a significantly higher number of frh and mvh genes for hydrogenotrophic methanogenesis. Additionally, ANME-1 archaea carry exclusive genes (sqr, TST, and mddA) involved in sulfide detoxification compared to ANME-2 archaea, leading to stronger sulfide tolerance. Overall, this study reveals the genomic mechanisms shaping the niche partitioning among ANME archaea in global methane seeps. IMPORTANCE Anaerobic methanotrophic (ANME) archaea are important methanotrophs in marine sediment, controlling the flux of biologically generated methane, which plays an essential role in the marine carbon cycle and climate change. So far, no strain of this lineage has been isolated in pure culture, which makes metagenomics one of the fundamental approaches to reveal their metabolic potential. Although the niche partitioning of ANME archaea was frequently reported in different studies, whether this pattern was consistent in global methane seeps had yet to be verified, and little was known about the genetic mechanisms underlying it. Here, we reviewed and analyzed the community structure of ANME archaea in global methane seeps and indicated that the niche partitioning of ANME archaea was statistically supported. Our comparative genomic analysis indicated that the capabilities of interspecies electron transfer, methanogenesis, and the resistance of oxygen and hydrogen sulfide could be critical in defining the distribution of ANME archaea in methane seep sediment.


Assuntos
Archaea , Metano , Archaea/genética , Anaerobiose , Metano/metabolismo , Oxirredução , Metagenômica
18.
J Drug Target ; 31(2): 142-151, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112185

RESUMO

Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.


Assuntos
Transtorno Depressivo Maior , Histonas , Humanos , Histonas/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Acetilação , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Processamento de Proteína Pós-Traducional
19.
Plant Physiol Biochem ; 200: 107750, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210860

RESUMO

Indian mustard (Brassica juncea L. Czern and Coss) is an important oil and vegetable crop frequently affected by seasonal drought stress during seed germination, which retards plant growth and causes yield loss considerably. However, the gene networks regulating responses to drought stress in leafy Indian mustard remain elusive. Here, we elucidated the underlying gene networks and pathways of drought response in leafy Indian mustard using next-generation transcriptomic techniques. Phenotypic analysis showed that the drought-tolerant leafy Indian mustard cv. 'WeiLiang' (WL) had a higher germination rate, antioxidant capacity, and better growth performance than the drought-sensitive cv. 'ShuiDong' (SD). Transcriptome analysis identified differentially expressed genes (DEGs) in both cultivars under drought stress during four germination time points (i.e., 0, 12, 24, and 36 h); most of which were classified as drought-responsive, seed germination, and dormancy-related genes. In the Kyoto Encyclopedia of Genes and Genome (KEGG) analyses, three main pathways (i.e., starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant hormone signal transduction) were unveiled involved in response to drought stress during seed germination. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) identified several hub genes (novel.12726, novel.1856, BjuB027900, BjuA003402, BjuA021578, BjuA005565, BjuB006596, novel.12977, and BjuA033308) associated with seed germination and drought stress in leafy Indian mustard. Taken together, these findings deepen our understanding of the gene networks for drought responses during seed germination in leafy Indian mustard and provide potential target genes for the genetic improvement of drought tolerance in this crop.


Assuntos
Germinação , Transcriptoma , Germinação/genética , Mostardeira/genética , Mostardeira/metabolismo , Secas , Sementes , Perfilação da Expressão Gênica , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Clin Genitourin Cancer ; 21(2): e78-e91, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36127253

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common and lethal cancer of the adult kidney. ADAP2 is a GTPase-activating protein was upregulated in clear cell renal cell carcinoma. The role of ADAP2 in ccRCC progression is unknown. METHODS: ADAP2 expression in ccRCC cell lines and tissues was examined via real-time PCR, Western blot and IHC. MTS, colony formation and transwell assay to explore the role of ADAP2 in ccRCC. ADAP2 in growth and metastasis of ccRCC were evaluated in vivo through ccRCC xenograft tumor growth, lung metastatic mice model. The prognostic role of ADAP2 was evaluated by survival analysis. RESULTS: ADAP2 mRNA was expressed at significantly higher levels in 23 pairs of ccRCC tissues than in normal kidney tissues (P < 0.01). Immunohistochemical analysis of 298 ccRCC tissues revealed elevated ADAP2 expression as an independent unfavorable prognostic factor for the overall survival (P = 0.0042) and progression-free survival (P = 0.0232) of patients. The KaplanMeier survival curve showed that patients with a higher expression of ADAP2 showed a significantly lower overall survival rate and disease-free survival rate. Moreover, high expression of ADAP2 at the mRNA level was associated with a worse prognosis for overall survival (P = 0.0083) in The Cancer Genome Atlas (TCGA) cohort. In vivo and in vitro functional study showed that overexpression of ADAP2 promotes ccRCC cell proliferation and metastasis ability, whereas knockdown of ADAP2 inhibited cell proliferation, colony formation, migration and invasion. CONCLUSION: ADAP2 is a novel prognostic marker and could promotes tumor progression in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Animais , Humanos , Camundongos , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Rim/patologia , Neoplasias Renais/patologia , Prognóstico , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA