Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
Conserv Biol ; : e14266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578127

RESUMO

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

3.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38316045

RESUMO

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

4.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176077

RESUMO

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

5.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38387089

RESUMO

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

6.
Ecotoxicol Environ Saf ; 279: 116488, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776782

RESUMO

Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.


Assuntos
Retardadores de Chama , Microbioma Gastrointestinal , Fígado , Organofosfatos , Tartarugas , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Bactérias/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Antioxidantes/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000059

RESUMO

There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 µg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.


Assuntos
Anticonvulsivantes , Carbamazepina , Microbioma Gastrointestinal , Larva , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Carbamazepina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos
8.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611936

RESUMO

Efficient sensors for toluene detecting are urgently needed to meet people's growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas sensors based on pure MOS have certain limitations in selectivity, operating temperature, and long-term stability, which hinders their further practical applications. Noble metals (including Ag, Au, Pt, Pd, etc.) have the ability to enhance the performance of MOS-based sensors via surface functionalization. Herein, ZnO nanoflowers (ZNFs) modified with bimetallic AuPt are prepared for toluene detection through hydrothermal method. The response of a AuPt@ZNF-based gas sensor can reach 69.7 at 175 °C, which is 30 times, 9 times, and 10 times higher than that of the original ZNFs, Au@ZNFs, and Pt@ZNFs, respectively. Furthermore, the sensor also has a lower optimal operating temperature (175 °C), good stability (94% of previous response after one month), and high selectivity towards toluene, which is the result of the combined influence of the electronic and chemical sensitization of noble metals, as well as the unique synergistic effect of the AuPt alloy. In summary, AuPt@ZNF-based sensors can be further applied in toluene detection in practical applications.

9.
Ecotoxicol Environ Saf ; 260: 115095, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267781

RESUMO

The extensive use of organophosphorus insecticides poses a threat to the survival of non-target organisms. Ecotoxicological outcomes of embryonic exposure to insecticides are rarely evaluated in various oviparous species. In this study, soft-shelled turtle (Pelodiscus sinensis) eggs were incubated in moist substrate containing different levels (0, 2, 20 and 200 µg/kg) of chlorpyrifos to investigate its toxic effects on embryonic development and survival, and hatchling physiological performance. Chlorpyrifos exposure had no significant impacts on embryonic development rate and egg survival in P. sinensis. Similarly, embryonic chlorpyrifos exposure neither obviously affected the size and locomotor performance of hatchlings, nor changed the activities of superoxide dismutase and catalase, and content of malondialdehyde in their erythrocytes. Based on liquid chromatography-mass spectrometry analysis, minor metabolic perturbations related to amino acid, lipid and energy metabolism in hatchlings after embryonic chlorpyrifos exposure were revealed by hepatic metabolite profiling. Overall, our results suggested that embryonic exposure to environmentally relevant levels of chlorpyrifos had only a limited impact on physiological performances of hatchlings, although it would result in a potential risk of hepatotoxicity in P. sinensis.


Assuntos
Clorpirifos , Inseticidas , Tartarugas , Animais , Clorpirifos/metabolismo , Tartarugas/fisiologia , Inseticidas/metabolismo , Desenvolvimento Embrionário , Metaboloma
10.
Ecotoxicol Environ Saf ; 267: 115617, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866109

RESUMO

The antidiabetic pharmaceutical metformin (MET) is largely unmetabolized by the human body. Its residues are readily detectable in various aquatic environments and may have adverse impacts on the growth and survival of aquatic species. To date, its toxicological effects have scarcely been explored in non-fish species. Here, we exposed the tadpoles of black-spotted pond frog (Pelophylax nigromaculatus) to different concentrations (0, 1, 10 and 100 µg/L) of MET for 30 days and measured the body size, intestinal microbiota and metabolites to evaluate potential effects of MET exposure in amphibian larvae. MET exposure did not affect the growth and intestinal microbial diversity of tadpoles. However, intestinal microbial composition changed significantly, with some pathogenic bacteria (e.g., bacterial genera Salmonella, Comamonas, Stenotrophomonas, Trichococcus) increasing and some beneficial bacteria (e.g., Blautia, Prevotella) decreasing in MET-exposed tadpoles. The levels of some intestinal metabolites associated with growth and immune performance also changed significantly following MET exposure. Overall, our results indicated that exposure to MET, even at environmentally relevant concentrations, would cause intestinal microbiota dysbiosis and metabolite alteration, thereby influencing the health status of non-target aquatic organisms, such as amphibians.


Assuntos
Microbioma Gastrointestinal , Metformina , Humanos , Animais , Metformina/toxicidade , Anuros , Hipoglicemiantes , Disbiose , Larva
11.
Small ; 18(50): e2204828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310138

RESUMO

Highly selective and sensitive H2 S sensors are in high demand in various fields closely related to human life. However, metal oxide semiconductors (MOSs) suffer from poor selectivity and single MOS@metal organic framework (MOF) core-shell nanocomposites are greatly limited due to the intrinsic low sensitivity of MOF shells. To simultaneously improve both selectivity and sensitivity, heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell nanowires (NWs) are meticulously synthesized with the assistance of atomic layer deposition. The ZIF-8 shell with regular pores and special surface functional groups is attractive for excellent selectivity and the heterostructured α-Fe2 O3 @ZnO core with an additional electron depletion layer is promising with enhanced sensitivity compared to a single MOS core. As a result, the heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell NWs achieve remarkable H2 S sensing performance with a high response (Rair /Rgas  = 32.2 to 10 ppm H2 S), superior selectivity, fast response/recovery speed (18.0/31.8 s), excellent long-term stability (at least over 3 months), and relatively low limit of detection (down to 200 ppb) at low operating temperature of 200 °C, far beyond α-Fe2 O3 @ZIF-8 or α-Fe2 O3 @ZnO core-shell NWs. Furthermore, a micro-electromechanical system-based H2 S gas sensor system with low power consumption is developed, holding great application potential in smart cities.

12.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35299168

RESUMO

Stretchable strain sensor, an important paradigm of wearable sensor which can be attached onto clothing or even human skin, is widely used in healthcare, human motion monitoring and human-machine interaction. Pattern-available and facile manufacturing process for strain sensor is pursued all the time. A carbon nanotube (CNT)/silver nanowire (AgNW)-based stretchable strain sensor fabricated by a facile process is reported here. The strain sensor exhibits a considerable Gauge factor of 6.7, long-term durability (>1000 stretching cycles), fast response and recovery (420 ms and 600 ms, respectively), hence the sensor can fulfill the measurement of finger movement. Accordingly, a smart glove comprising a sensor array and a flexible printed circuit board is assembled to detect the bending movement of five fingers simultaneously. Moreover, the glove is wireless and basically fully flexible, it can detect the finger bending of wearer and display the responses distinctly on an APP of a smart phone or a host computer. Our strain senor and smart glove will broaden the materials and applications of wearable sensors.


Assuntos
Nanotubos de Carbono , Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Prata
13.
Ecotoxicol Environ Saf ; 239: 113621, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569300

RESUMO

Environmental issues associated with the widespread use of agricultural chemicals are being seriously concerned. Of them, toxicological impacts of fungicides in aquatic organisms are often overlooked. Here, soft-shelled turtle (Pelodiscus sinensis) hatchlings were exposed to different concentrations of vinclozolin (0, 5, 50, 500 and 5000 µg/L) for 60 days to investigate the impact of fungicide exposure on their gut microbial composition and diversity. Vinclozolin exposure significantly affected the composition of the gut microbiota in hatchling turtles. Unexpectedly, gut bacterial diversity and richness of vinclozolin-exposed turtles (but not for the 5000 µg/L-exposed group) were relatively higher than control ones. At the phylum level, the abundance of Firmicutes was decreased, while that of Proteobacteria was increased in high-concentration groups. At the genus level, some bacterial genera including Cellulosilyticum, Romboutsia and Clostridium_sensu_stricto, were significantly changed after vinclozolin exposure; and some uniquely observed in high-concentration groups. Gene function predictions showed that genes related to amino acid metabolism were less abundant, while those related to energy metabolism more abundant in high-concentration groups. The prevalence of some pathogens inevitably affected gut health status of vinclozolin-exposed turtles. Such gut microbiota dysbiosis might be potentially linked with hepatic metabolite changes induced by vinclozolin exposure.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Tartarugas , Animais , Disbiose/induzido quimicamente , Fungicidas Industriais/toxicidade , Oxazóis
14.
Ecotoxicol Environ Saf ; 231: 113220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066435

RESUMO

Many man-made chemicals that are released into water bodies in agricultural landscapes have been identified as endocrine disruptors and can cause serious impacts on the growth and survival of aquatic species living in these environments. However, very little attention has been paid to their toxicological effects in cultured non-fish species, such as aquatic turtles. We exposed hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to different concentrations of vinclozolin (0, 5, 50 and 500 µg/L) for 60 days to assess physiological and metabolic impacts of this fungicide. Despite no death occurrence, hatchling turtles exposed to the highest concentration of vinclozolin consumed less food, grew more slowly (resulting in smaller body size after exposure) and performed more poorly in behavioral swimming tests than controls and turtles exposed to lower concentrations. Hepatic metabolite profiles acquired via liquid chromatography-mass spectrometry (LC-MS) revealed multiple metabolic perturbations related to amino acid, lipid, and fatty acid metabolism in animals exposed to environmentally relevant concentrations. Specifically, many critical metabolites involved in energy-related metabolic pathways (such as some intermediates in the tricarboxylic acid cycle, lactate, and some amino acids) were present in livers of hatchling turtles exposed vinclozolin, though at lower concentrations, reflecting energy metabolism dysregulation induced by exposure to this fungicide. Overall, our results suggest that the changes in growth and behavioral performances caused by chronic vinclozolin exposure may be associated with internal physiological and metabolic disorders mediated at the biochemical level.


Assuntos
Fungicidas Industriais , Tartarugas , Animais , Fungicidas Industriais/toxicidade , Fígado , Oxazóis/toxicidade
15.
Opt Express ; 29(22): 36559-36566, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809064

RESUMO

The quantum efficiency of GaN-based micro-light-emitting diodes (micro-LEDs) is of great significance for their luminescence and detection applications. Optimized passivation process can alleviate the trapping of carriers by sidewall defects, such as dangling bonds, and is regarded as an effective way to improve the quantum efficiency of micro-LEDs. In this work, an AlN passivation layer was prepared by atomic layer deposition to improve the electro-optical and photoelectric conversion efficiency in GaN-based micro-LEDs. Compared to conventional Al2O3 passivation, the AlN passivation process has a stronger ability to eliminate the sidewall defects of micro-LEDs due to the homogeneous passivation interface. Our experiments show that the AlN-passivated device exhibits two orders of magnitude lower forward leakage and a smaller ideality factor, which leads to significantly enhanced external quantum efficiency (EQE). For 25*25 µm2 micro-LEDs, the EQE of the AlN-passivated device was 18.3% and 57.7% higher than that of the Al2O3-passivated device in luminescence application and detection application, respectively.

16.
Nanotechnology ; 32(27)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33740776

RESUMO

The growth of hetero-epitaxial ZnO-AlN core-shell nanowires (NWs) and single crystalline AlN films on non-polar ZnO substrate at temperature of 380 °C by atomic layer deposition (ALD) was investigated. Structural characterization shows that the AlN shells have excellent single-crystal properties. The epitaxial relationship of [0002]ZnO//[0002]AlN, and [10-10]ZnO//[10-10]AlNbetween ZnO core and AlN shell has been obtained. The ZnO NW templates were subsequently removed by annealing treatment in forming gas, resulting in ordered arrays of AlN single-crystal nanotubes. The impact factors on the epitaxial growth of AlN films are thoroughly investigated. It turned out that the growth parameters including lattice mismatch between substrate and AlN, growth temperature, and the polarity of ZnO substrate play important roles on the growth of single-crystal AlN films by ALD. Finally, non-polar AlN films with single-crystalline structure have been successfully grown onm-plane ZnO (10-10) single-crystal substrates. The as-grown hollow AlN nanotubes arrays and non-polar AlN films with single-crystalline structures are suggested to be highly promising for applications in nanoscale devices. Our research has developed a potential method to obtain other inorganic nanostructures and films with single-crystalline structure at fairly low temperature.

17.
Nanotechnology ; 32(21)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33535194

RESUMO

An asymmetric dual-gate (DG) MoS2field-effect transistor (FET) with ultrahigh electrical performance and optical responsivity using atomic-layer-deposited HfO2as a top-gate (TG) dielectric was fabricated and investigated. The effective DG modulation of the MoS2FET exhibited an outstanding electrical performance with a high on/off current ratio of 6 × 108. Furthermore, a large threshold voltage modulation could be obtained from -20.5 to -39.3 V as a function of the TG voltage in a DG MoS2phototransistor. Meanwhile, the optical properties were systematically explored under a series of gate biases and illuminated optical power under 550 nm laser illumination. An ultrahigh photoresponsivity of 2.04 × 105AW-1has been demonstrated with the structure of a DG MoS2phototransistor because the electric field formed by the DG can separate photogenerated electrons and holes efficiently. Thus, the DG design for 2D materials with ultrahigh photoresponsivity provides a promising opportunity for the application of optoelectronic devices.

18.
J Therm Biol ; 100: 103079, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503815

RESUMO

The incubation temperature for embryonic development affects several aspects of hatchling performance, but its impact on the thermal sensitivity of performance attributes remains poorly investigated. In the present study, Trachemys scripta elegans hatchlings from two different latitudinal populations were collected to assess the effects of different incubation temperatures on the locomotor (swimming speed) and physiological (heart rate) performances, and the thermal sensitivity of these two attributes. The incubation temperature significantly affected the examined physiological traits. Hatchling turtles produced at low incubation temperature exhibited relatively higher cold tolerance (lower body temperatures at which the animals lose the ability to escape from the lethal conditions), and reduced heart rate and swimming speed. Furthermore, the effect of incubation temperature on the thermal sensitivity of swimming speed differed between the low- and high-latitude populations. At relatively high incubation temperatures, the high-latitude hatchling turtles exhibited reduced thermal sensitivities of swimming speed than those of the low-latitude ones. Reduced thermal sensitivity of locomotor performance together with high cold tolerance, exhibited by the high-latitude hatchling turtles potentially reflected local adaptation to relatively colder and more thermally-variable environments.


Assuntos
Ecossistema , Embrião não Mamífero/fisiologia , Termotolerância , Tartarugas/fisiologia , Animais , Temperatura Corporal , Frequência Cardíaca , Espécies Introduzidas , Locomoção , Oviposição , Tartarugas/crescimento & desenvolvimento
19.
Nanotechnology ; 31(34): 345206, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32396888

RESUMO

The effects of x-ray irradiation on the mechanically exfoliated quasi-two-dimensional (quasi-2D) ß-Ga2O3 nanoflake field-effect transistors (FETs) under the condition of biasing voltage were systematically investigated for the first time. It has been revealed that the device experienced two stages during irradiation. At low ionizing doses (<240 krad), the device performance is mainly influenced by the photo-effect and the subsequent persistent photocurrent (PPC) effect as a result of the pre-existing electron traps (e-trap) in the oxides far away from the SiO2/ß-Ga2O3 interface. At larger doses (>240 krad), the device characteristics are dominated by the radiation-induced structural or compositional deterioration. The newly-generated e-traps are found located at the SiO2/ß-Ga2O3 interface. This study shed light on the future radiation-tolerant device fabrication process development, paving a way towards the feasibility and practicability of ß-Ga2O3-based devices in extreme-environment applications.

20.
J Therm Biol ; 80: 16-20, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30784481

RESUMO

Inter-population variations in growth rate can result from independent or interactive effects of genetic and environmental factors, and be induced by some physiological differences as well. Toad-headed lizards (Phrynocephalus vlangalii) from a higher-elevation population were shown to have a higher growth rate than those from a lower-elevation population. The physiological basis of growth rate variation in this species is not well understood. Here, we investigated the feeding performance and resting metabolic rate (RMR) of lower- and higher-elevation individuals at different test ambient temperatures to evaluate the role of differences in energy intake, assimilation efficiency and metabolic expenditure on growth rate variations. Within the range of 25-35 °C, lizard RMR increased with increasing test ambient temperature, but food intake, apparent digestive coefficient (ADC, food energy minus faecal energy divided by food energy), and assimilation efficiency (AE, food energy minus faecal and urinary energy divided by food energy) were less thermally sensitive in both populations. Higher-elevation lizards tended to eat more food and have a lower RMR than lower-elevation ones, despite the lack of differences in ADC and AE. Our result showed that more energy intake and reduced maintenance cost may be associated with the higher growth rate of higher-elevation lizards. Accordingly, inter-population differences in energy acquisition and expenditure could act as potential sources for geographic variation in growth rate.


Assuntos
Altitude , Lagartos/fisiologia , Animais , Metabolismo Basal , Ingestão de Alimentos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA