Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(47): 18888-18897, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37387610

RESUMO

Heterogeneous catalytic ozonation (HCO) is an effective technology for advanced wastewater treatment, while the influence of coexisting salts remains unclear and controversial. Here, we systematically explored the influence of NaCl salinity on the reaction and mass transfer of HCO through lab experiments, kinetic simulation, and computational fluid dynamics modeling, and proposed that the trade-off between reaction inhibition and mass transfer enhancement would affect the pollutants degradation pattern under varying salinity. The increase of NaCl salinity decreased ozone solubility and accelerated the futile consumption of ozone and hydroxyl radicals (•OH), and the maximum •OH concentration under 50 g/L salinity was only 23% of that without salinity. However, the increase of NaCl salinity also significantly reduced the ozone bubble size and enhanced the interphase and intraliquid mass transfer, with the volumetric mass transfer coefficient being 130% higher than that without salinity. The trade-off between reaction inhibition and mass transfer enhancement shifted under different pH values and aerator pore sizes, and the oxalate degradation pattern would change correspondingly. Besides, the trade-off was also identified for Na2SO4 salinity. These results emphasized the dual influence of salinity and offered a new theoretical perspective on the role of salinity in the HCO process.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Cloreto de Sódio , Salinidade , Radical Hidroxila , Sais , Catálise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Environ Sci Technol ; 57(32): 12072-12082, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37486327

RESUMO

Anaerobic digestion (AD) is a promising method to treat organic matter. However, AD performance was limited by the inefficient electron transfer and metabolism imbalance between acid-producing bacteria and methanogens. In this study, a novel binary electroactive material (Fe3O4@biochar) with pseudocapacitance (1.4 F/g) and conductance (10.2 µS/cm) was exploited to store-release electrons as well as enhance the direct electron transfer between acid-producing bacteria and methanogens during the AD process. The mechanism of pseudocapacitance/conductance on mediating interspecies electron transfer was deeply studied at each stage of AD. In the hydrolysis acidification stage, the pseudocapacitance of Fe3O4@biochar acting as electron acceptors proceeded NADH/NAD+ transformation of bacteria to promote ATP synthesis by 21% which supported energy for organics decomposition. In the methanogenesis stage, the conductance of Fe3O4@biochar helped the microbes establish direct interspecies electron transfer (DIET) to increase the coenzyme F420 content by 66% and then improve methane production by 13%. In the complete AD experiment, electrons generated from acid-producing bacteria were rapidly transported to methanogens via conductors. Excess electrons were buffered by the pseudocapacitor and then gradually released to methanogens which alleviated the drastic drop in pH. These findings provided a strategy to enhance the electron transfer in anaerobic treatment as well as guided the design of electroactive materials.


Assuntos
Elétrons , Euryarchaeota , Anaerobiose , Reatores Biológicos , Transporte de Elétrons , Bactérias/metabolismo , Euryarchaeota/metabolismo , Metano , Esgotos
3.
J Nanobiotechnology ; 18(1): 82, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471516

RESUMO

BACKGROUND: Dysfunction of human respiratory and electro-cardiac activities could affect the ability of the heart to pump blood and the lungs to inhale oxygen. Thus, a device could simultaneously measure electro-cardiac signal and respiratory pressure could provide vital signs for predicting early warning of cardio-pulmonary function-related chronic diseases such as cardiovascular disease, and respiratory system disease. RESULTS: In this study, a flexible device integrated with piezo-resistive sensing element and voltage-sensing element was developed to simultaneously measure human respiration and electro-cardiac signal (including respiratory pressure, respiration frequency, and respiration rhythm; electro-cardio frequency, electro-cardio amplitude, and electro-cardio rhythm). When applied to the measurement of respiratory pressure, the piezo-resistive performance of the device was enhanced by nano-copper modification, which detection limitation of pressure can reduce to 100 Pa and the sensitivity of pressure can achieve to 0.053 ± 0.00079 kPa-1. In addition, the signal-to-noise ratio during bio-electrical measurement was increased to 10.7 ± 1.4, five times better than that of the non-modified device. CONCLUSION: This paper presents a flexible device for the simultaneous detection of human respiration and cardiac electrical activity. To avoid interference between the two signals, the layout of the electrode and the strain sensor was optimized by FEA simulation analysis. To improve the piezo-resistive sensitivity and bio-electric capturing capability of the device, a feather-shaped nano-copper was modified onto the surface of carbon fiber. The operation simplicity, compact size, and portability of the device open up new possibilities for multi-parameter monitoring.


Assuntos
Cobre/química , Eletrocardiografia/instrumentação , Nanopartículas Metálicas/química , Monitorização Fisiológica/instrumentação , Respiração , Eletrodos , Humanos , Processamento de Sinais Assistido por Computador/instrumentação , Razão Sinal-Ruído
4.
Sensors (Basel) ; 19(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717598

RESUMO

Enrichment of cadmium ion (Cd2+) from the environment may lead to kidney disease and weakened immunity in the body. Current techniques are not convenient enough to measure Cd2+ concentration in the environment due to low sensitivity and poor linear range. In this paper, a new measurement technique is proposed using a new sensing electrode made of nano-copper-enhanced carbon fiber. Nano-copper was deposited onto the surface of carbon fiber to enhance the current concentration and mass transfer rate of Cd2+ during measurement, which improved the electrochemical detection sensitivity significantly (by up to 3.7 × 108 nA/nM) and broadened the linear range to 10~105 nM. This device provides a low-cost solution for measuring Cd2+ concentration in the environment.

5.
Water Res ; 257: 121685, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728774

RESUMO

Water disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective. The concept of "equivalent ozone depletion rate constant" (k') was introduced to quantify the influence of different species, and a kinetic model was developed based on the k' values for simulating the ozone inactivation processes in complex matrix. The mechanisms through which diverse species influenced the ozone inactivation effectiveness were identified: 1) competition effects (k' = 105∼107 M-1s-1), including organic matters and reductive ions (SO32-, NO2-, and I-), which were the most influential species inhibiting the virus inactivation; 2) shielding effects (k' = 103∼104 M-1s-1), including Ca2+, Mg2+, and kaolin; 3) insignificant effects (k' = 0∼1 M-1s-1), including Cl-, SO42-, NO3-, NH4+, and Br-; 4) promotion effects (k' = ∼-103 M-1s-1), including CO32- and HCO3-. Prediction of ozone disinfection efficiency and evaluation of species contribution under complex aquatic matrices were successfully realized utilizing the model. The systematic understanding and methodologies developed in this research provide a reliable framework for predicting ozone inactivation efficiency under complex matrix, and a potential tool for accurate disinfectant dosage determination and interfering factors control in actual wastewater treatment processes.


Assuntos
Desinfecção , Ozônio , Inativação de Vírus , Águas Residuárias , Ozônio/farmacologia , Águas Residuárias/virologia , Inativação de Vírus/efeitos dos fármacos , Desinfecção/métodos , Purificação da Água , Desinfetantes/farmacologia , Modelos Teóricos , Cinética
6.
Sci Rep ; 13(1): 123, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599857

RESUMO

Raman spectra of two series of InAs/AlAs short-period superlattices were measured at room temperature to investigate the impact of strain on the phonon modes taking into consideration the confinement effect and interface mode. The evolution of strain in the InAs layer and the AlAs layer was studied in (InAs)2/(AlAs)2 superlattices grown at various temperatures (400-550 °C). While the strain existed in the AlAs layer remained almost constant, the strain in the InAs layer varied significantly as the growth temperature increased from 500 to 550 °C. The confinement effect on the optical phonons was analyzed based on results from (InAs)n/(AlAs)n grown at 450 °C (n = 2, 3, 4, and 5). Additionally, the confinement effect was found to be stronger in shorter periods with higher interface quality. The interface phonon modes were resolved between the longitudinal optical and transverse optical phonon modes, which assist in the rough estimation of the thickness of the layers. The disorder-activated acoustic phonon modes at the low-frequency side were also addressed.

7.
Mater Sci Eng C Mater Biol Appl ; 117: 111345, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919692

RESUMO

Simultaneous measurement of multi-physiological signals can provide effective diagnosis and therapeutic assessment of diseases. This paper reports a carbon nanotube (CNT) - Polydimethylsiloxane (PDMS) - based wearable device with piezo-resistive and voltage-sensing capabilities for simultaneously capturing wrist pulse pressure and cardiac electrical signal. The layout design of sensing elements in the device was guided by analyzing strain distribution and electric field distribution for minimizing the interference between wrist pulse and cardiac electric activity during measurement. Each device was preconditioned under the strain of 20% until the resistance change of the device reached equilibrium. After preconditioning, the relationship between the resistance change and the pressure was calibrated, which determined the device sensitivity to be 0.01 Pa-1 and the linear pressure range of the device to be 0.4 kPa to 14.0 kPa. Mechanisms of CNT-PDMS for sensing strain signal and electrical pulse signal were explored by scanning electron microscopy (SEM) imaging and equivalent circuit modeling. The device was applied to monitor the wrist pulse and ECG signals of volunteers during the recovering process after physical exercises.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Pressão Sanguínea , Dimetilpolisiloxanos , Humanos , Punho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA