Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 230, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561687

RESUMO

BACKGROUND: Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS: Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS: The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.


Assuntos
Resposta ao Choque Frio , Dendrobium , Resposta ao Choque Frio/genética , Dendrobium/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
Planta ; 245(2): 439-457, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27833998

RESUMO

MAIN CONCLUSION: Five SEP -like genes were cloned and identified from Platanus acerifolia through the analysis of expression profiles, protein-protein interaction patterns, and transgenic phenotypes, which suggested that they play conservative and diverse functions in floral initiation and development, fruit development, bud growth, and dormancy. SEPALLATA (SEP) genes have been well characterized in core eudicots and some monocots, and they play important and diverse roles in plant development, including flower meristem initiation, floral organ identity, and fruit development and ripening. However, the knowledge on the function and evolution of SEP-like genes in basal eudicot species is very limited. Here, we cloned and identified five SEP-like genes from London plane (Platanus acerifolia), a basal eudicot tree that is widely used for landscaping in cities. Sequence alignment and phylogenetic analysis indicated that three genes (PlacSEP1.1, PlacSEP1.2, and PlacSEP1.3) belong to the SEP1/2/4 clade, while the other two genes (PlacSEP3.1 and PlacSEP3.2) are grouped into the SEP3 clade. Quantitative real-time PCR (qRT-PCR) analysis showed that all PlacSEPs, except PlacSEP1.1 and PlacSEP1.2, were expressed during the male and female inflorescence initiation, and throughout the flower and fruit development process. PlacSEP1.2 gene expression was only detected clearly in female inflorescence at April. PlacSEP1.3 and PlacSEP3.1 were also expressed, although relatively weak, in vegetative buds of adult trees. No evident PlacSEPs transcripts were detected in various organs of juvenile trees. Overexpression of PlacSEPs in Arabidopsis and tobacco plants resulted in different phenotypic alterations. 35S:PlacSEP1.1, 35S:PlacSEP1.3, and 35S:PlacSEP3.2 transgenic Arabidopsis plants showed evident early flowering, with less rosette leaves but more cauline leaves, while 35S:PlacSEP1.2 and PlacSEP3.1 transgenic plants showed no visible phenotypic changes. 35S:PlacSEP1.1 and 35S:PlacSEP3.2 transgenic Arabidopsis plants also produced smaller and curled leaves. Overexpression of PlacSEP1.1 and PlacSEP3.1 in tobacco resulted in the early flowering and producing more lateral branches. Yeast two-hybrid analysis indicated that PlacSEPs proteins can form homo- or hetero-dimers with the Platanus APETALA1 (AP1)/FRUITFULL (FUL), B-, C-, and D-class MADS-box proteins in different interacting patterns and intensities. Our results suggest that the five PlacSEP genes may play important and divergent roles during floral initiation and development, as well as fruit development, by collaborating with FUL, B-, C-, and D-class MADS-box genes in London plane; PlacSEP1.3 and PlacSEP3.1 genes might also involve in vegetative bud growth and dormancy. The results provide valuable data for us to understand the functional evolution of SEP-like genes in basal eudicot species.


Assuntos
Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Nicotiana/genética , Fatores de Transcrição/genética , Árvores
3.
Plant Cell Rep ; 31(10): 1851-65, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821362

RESUMO

The LEAFY/FLORICAULA (LFY/FLO) homologous genes are necessary for normal flower development in diverse angiosperm species. To understand the genetic and molecular mechanisms underlying floral initiation and development in Platanaceae, an early divergent eudicot family consisting of large monoecious trees, we isolated a homolog of LFY/FLO, PlacLFY, and its promoter from London plane (Platanus acerifolia). PlacLFY is 1,419 bp in length, with an ORF of 1,122 bp encoding a predicted polypeptide of 374 amino acids and 5'/3'-UTR of 54 and 213 bp, respectively. The putative PlacLFY protein showed a high degree of identity (56-84 %) with LFY/FLO homologs from other species, including two highly conserved regions, the N and C domains, and a less conserved amino-terminal proline-rich region. Real-time PCR analysis showed that PlacLFY was expressed mainly in male inflorescences from May of the first year to March of next year, with the highest expression level in December, and in female inflorescences from June to April of next year. PlacLFY mRNA was also detected strongly in subpetiolar buds of December from 4-year-old and adult trees, and slightly in stem of young seedling and young leaf of adult plant. Additionally, we cloned 1,138 bp promoter sequence of PlacLFY and we drove GUS expression in transgenic tobacco by the chimerical pPlacLFY::GUS construction. Histological GUS staining analysis indicated that PlacLFY promoter can drive GUS gene expression in shoot apex, stem, young leaf and petiole, flower stalk, petal tip, and young/semi-mature fruits of transgenic tobacco, which is almost identical to the expression pattern of PlacLFY in London plane. The results revealed that the PlacLFY gene isolated from London plane is expressed not only in reproductive organ but also in vegetative organs. Moreover, this expression pattern is consistent with the expression pattern in tobacco of a GUS reporter gene under the control of the potential promoter region of PlacLFY.


Assuntos
Perfilação da Expressão Gênica/métodos , Magnoliopsida/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA de Plantas/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Inflorescência/genética , Inflorescência/metabolismo , Magnoliopsida/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Domínios Proteicos Ricos em Prolina , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Regiões não Traduzidas
4.
Plant Sci ; 280: 206-218, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30823999

RESUMO

The function of euAP1 and euFUL in AP1/FUL lineage have been well characterized in core eudicots, and they play common and distinct roles in plant development. However, the evolution and function of FUL-like genes is poorly understood in basal eudicots. In this study, we identified three FUL-like genes PlacFL1/2/3 from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that PlacFL1/2/3 are AP1/FUL orthologs and encoded proteins containing FUL motif and paleoAP1 motif. Quantitative real-time PCR (qRT-PCR) analysis showed that PlacFL1/2/3 were expressed in both vegetative and reproductive tissues, but with distinct spatiotemporal patterns. In contrast to PlacFL1 and PlacFL3, PlacFL2 exhibited higher expression levels and broader expression regions, and that the expression of PlacFL2 gene showed a decreasing and increasing tendency in subpetiolar buds during dormancy induction and breaking, respectively. Overexpression of PlacFLs in Arabidopsis and PlacFL3 in tobacco resulted in early flowering, as well as early termination of inflorescence meristems for transgenic Arabidopsis plants. The expression changes of flowering time and flower meristem identity genes in transgenic Arabidopsis lines with different PlacFLs suggested that PlacFL2 and PlacFL3 may regulate different downstream genes to perform divergent functions. Yeast two-hybrid analysis indicated that PlacFLs interacted strongly with PlacSEP proteins, and PlacFL3 instead of PlacFL1 and PlacFL2 could also form a homodimer and interact with D-class proteins. Our results suggest that PlacFLs may play conserved functions in regulating flowering and flower development, and PlacFL2 might also be involved in dormancy regulation. The research helps us to understand the functional evolution of FUL-like genes in basal eudicots, especially in perennial woody species.


Assuntos
Flores/metabolismo , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Magnoliopsida/genética , Proteínas de Plantas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA