Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(3): 875-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072152

RESUMO

BACKGROUND: The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES: To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS: Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS: Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS: Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.


Assuntos
Anemia Ferropriva , Encefalopatias , Deficiências de Ferro , Animais , Lactente , Humanos , Criança , Anemia Ferropriva/complicações , Anemia Ferropriva/diagnóstico , Macaca mulatta/metabolismo , Prognóstico , Ferro/metabolismo , Hemoglobinas/metabolismo , Encefalopatias/metabolismo , Biomarcadores , Encéfalo/metabolismo
2.
J Nutr ; 153(1): 148-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913448

RESUMO

BACKGROUND: Infantile iron deficiency (ID) causes anemia and compromises neurodevelopment. Current screening relies on hemoglobin (Hgb) determination at 1 year of age, which lacks sensitivity and specificity for timely detection of infantile ID. Low reticulocyte Hgb equivalent (RET-He) indicates ID, but its predictive accuracy relative to conventional serum iron indices is unknown. OBJECTIVES: The objective was to compare diagnostic accuracies of iron indices, red blood cell (RBC) indices, and RET-He for predicting the risk of ID and IDA in a nonhuman primate model of infantile ID. METHODS: Serum iron, total iron binding capacity, unsaturated iron binding capacity, transferrin saturation (TSAT), Hgb, RET-He, and other RBC indices were determined at 2 wk and 2, 4, and 6 mo in breastfed male and female rhesus infants (N = 54). The diagnostic accuracies of RET-He, iron, and RBC indices for predicting the development of ID (TSAT < 20%) and IDA (Hgb < 10 g/dL + TSAT < 20%) were determined using t tests, area under the receiver operating characteristic curve (AUC) analysis, and multiple regression models. RESULTS: Twenty-three (42.6%) infants developed ID and 16 (29.6%) progressed to IDA. All 4 iron indices and RET-He, but not Hgb or RBC indices, predicted future risk of ID and IDA (P < 0.001). The predictive accuracy of RET-He (AUC = 0.78, SE = 0.07; P = 0.003) for IDA was comparable to that of the iron indices (AUC = 0.77-0.83, SE = 0.07; P ≤ 0.002). A RET-He threshold of 25.5 pg strongly correlated with TSAT < 20% and correctly predicted IDA in 10 of 16 infants (sensitivity: 62.5%) and falsely predicted possibility of IDA in only 4 of 38 unaffected infants (specificity: 89.5%). CONCLUSIONS: RET-He is a biomarker of impending ID/IDA in rhesus infants and can be used as a hematological parameter to screen for infantile ID.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Masculino , Feminino , Animais , Reticulócitos/química , Reticulócitos/metabolismo , Anemia/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Primatas/metabolismo
3.
Dev Psychobiol ; 65(5): e22396, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338252

RESUMO

There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.


Assuntos
Anestesia , Substância Branca , Masculino , Animais , Feminino , Substância Branca/diagnóstico por imagem , Macaca mulatta , Imagem de Tensor de Difusão/métodos , Encéfalo
4.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R486-R500, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271351

RESUMO

The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Anemia Ferropriva/líquido cefalorraquidiano , Animais , Biomarcadores , Humanos , Ferro , Macaca mulatta , Proteômica
5.
FASEB J ; 35(6): e21682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042210

RESUMO

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/fisiologia , Microbioma Gastrointestinal , Leite/microbiologia , Proteobactérias/fisiologia , Animais , Encéfalo/microbiologia , Dieta , Fezes/microbiologia , Feminino , Macaca mulatta , Masculino
6.
J Surg Res ; 267: 336-341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34186310

RESUMO

BACKGROUND: Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples. METHODS: With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso. RESULTS: Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase. CONCLUSIONS: We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.


Assuntos
Microbiota , Micobioma , Animais , Feminino , Glucana Endo-1,3-beta-D-Glucosidase , Macaca mulatta/genética , Masculino , Complexos Multienzimáticos , Micobioma/genética , Peptídeo Hidrolases , RNA Ribossômico 16S/genética
7.
Br J Anaesth ; 126(4): 845-853, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549320

RESUMO

BACKGROUND: Non-human primates are commonly used in neuroimaging research for which general anaesthesia or sedation is typically required for data acquisition. In this analysis, the cumulative effects of exposure to ketamine, Telazol® (tiletamine and zolazepam), and the inhaled anaesthetic isoflurane on early brain development were evaluated in two independent cohorts of typically developing rhesus macaques. METHODS: Diffusion MRI scans were analysed from 43 rhesus macaques (20 females and 23 males) at either 12 or 18 months of age from two separate primate colonies. RESULTS: Significant, widespread reductions in fractional anisotropy with corresponding increased axial, mean, and radial diffusivity were observed across the brain as a result of repeated anaesthesia exposures. These effects were dose dependent and remained after accounting for age and sex at time of exposure in a generalised linear model. Decreases of up to 40% in fractional anisotropy were detected in some brain regions. CONCLUSIONS: Multiple exposures to commonly used anaesthetics were associated with marked changes in white matter microstructure. This study is amongst the first to examine clinically relevant anaesthesia exposures on the developing primate brain. It will be important to examine if, or to what degree, the maturing brain can recover from these white matter changes.


Assuntos
Anestesia Geral/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/diagnóstico por imagem , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Imagem de Tensor de Difusão/tendências , Feminino , Macaca mulatta , Masculino
8.
J Nutr ; 150(4): 685-693, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722400

RESUMO

BACKGROUND: Iron deficiency is the most common nutrient deficiency in human infants aged 6 to 24 mo, and negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. There can be persistent influences on long-term metabolic health beyond its acute effects. OBJECTIVES: The objective was to determine how iron deficiency in infancy alters the serum metabolomic profile and to test whether these effects persist after the resolution of iron deficiency in a nonhuman primate model of spontaneous iron deficiency. METHODS: Blood was collected from naturally iron-sufficient (IS; n = 10) and iron-deficient (ID; n = 10) male and female infant rhesus monkeys (Macaca mulatta) at 6 mo of age. Iron deficiency resolved without intervention upon feeding of solid foods, and iron status was re-evaluated at 12 mo of age from the IS and formerly ID monkeys using hematological and other indices; sera were metabolically profiled using HPLC/MS and GC/MS with isobaric standards for identification and quantification at both time points. RESULTS: A total of 413 metabolites were measured, with differences in 40 metabolites identified between IS and ID monkeys at 6 mo (P$\le $ 0.05). At 12 mo, iron-related hematological parameters had returned to normal, but the formerly ID infants remained metabolically distinct from the age-matched IS infants, with 48 metabolites differentially expressed between the groups. Metabolomic profiling indicated altered liver metabolites, differential fatty acid production, increased serum uridine release, and atypical bile acid production in the ID monkeys. CONCLUSIONS: Pathway analyses of serum metabolites provided evidence of a hypometabolic state, altered liver function, differential essential fatty acid production, irregular uracil metabolism, and atypical bile acid production in ID infants. Many metabolites remained altered after the resolution of ID, suggesting long-term effects on metabolic health.


Assuntos
Metaboloma/fisiologia , Doenças dos Macacos/sangue , Animais , Ácidos e Sais Biliares/biossíntese , Dieta/veterinária , Ácidos Graxos/biossíntese , Feminino , Deficiências de Ferro , Fígado/fisiopatologia , Macaca mulatta , Masculino , Metabolômica/métodos , Estudos Prospectivos , Uracila/metabolismo
9.
Am J Primatol ; 82(1): e23085, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875991

RESUMO

Rhesus monkeys are typically seasonal breeders but can be induced to extend the timing of their mating and births under captive conditions. The following analyses evaluated the potential impact of extending their pregnancies and deliveries year-round. Birth records from a large breeding colony housed in an indoor facility with a constant 14-hr light/10-hr dark cycle were analyzed across 25 years to examine seasonal trends in monkeys that mated in one of two ways: spontaneous in social groups or with a scheduled, timed-mating protocol. The dates of delivery and birth weights for 2,084 infants were used in these analyses. Younger nulliparous females mating in social groups evinced a clear seasonal peak when birthing their first infant. However, older females, both primiparous and multiparous, could be bred continuously, which enable the birth of infants in every month of the year. Based on the live birth rate, infant birth weights, high survival rates, and the normal sex ratio of infants birthed year-round, there were no adverse effects of breeding rhesus monkeys in this way. The continuous availability of infant births can be very advantageous for many types of research programs.


Assuntos
Cruzamento/métodos , Macaca mulatta/fisiologia , Gravidez/fisiologia , Criação de Animais Domésticos/métodos , Animais , Coeficiente de Natalidade , Peso ao Nascer , Feminino , Masculino , Estações do Ano , Razão de Masculinidade
10.
J Pediatr Gastroenterol Nutr ; 69(3): 363-369, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31107796

RESUMO

OBJECTIVES: Gut bacteria play an essential role during infancy and are strongly influenced by the mode of birth and feeding. A primate model was used to investigate the benefits of exposure to the mother or conversely the negative impact of early nursery rearing on microbial colonization. METHOD: Rectal swabs were obtained from rhesus macaques born vaginally and mother-reared (MR, N = 35) or delivered primarily via cesarean-section and human-reared (HR, N = 19). Microbiome composition was determined by rRNA gene amplicon sequencing at 2, 4, and 8 weeks of age and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs used to assess influences on functional metabolic pathways in the gut. Growth trajectories and incidence of diarrheic symptoms were evaluated. RESULTS: The microbial community structure was different between MR and HR infants with respect to phylogeny and abundance at all 3 ages. When examining dominant phyla, HR infants had a higher Firmicutes-to-Bacteroidetes ratio. At the genus level, breast milk-dependent commensal taxa and adult-typical genera were more abundant in MR infants. This difference resulted in a corresponding shift in the predicted metabolic effects, specifically for microbial genes associated with metabolism and immune function. HR infants had faster growth trajectories (P < 0.001), but more diarrheic symptoms by 6 months postnatal (P = 0.008). CONCLUSIONS: MR infants acquired adult-typical microbiota more quickly, and had higher levels of several beneficial commensal taxa. Cesarean-delivered and formula-fed infants had different developmental trajectories of bacterial colonization. Establishment of the gut microbiome was associated with an infant's growth trajectory, and implicated in the subsequent vulnerability to Campylobacter infections associated with diarrhea in infant monkeys.


Assuntos
Leite , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Macaca mulatta , Modelos Animais
11.
Nutr Neurosci ; 21(1): 40-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27499134

RESUMO

OBJECTIVES: Iron deficiency (ID) anemia leads to long-term neurodevelopmental deficits by altering iron-dependent brain metabolism. The objective of the study was to determine if ID induces metabolomic abnormalities in the cerebrospinal fluid (CSF) in the pre-anemic stage and to ascertain the aspects of abnormal brain metabolism affected. METHODS: Standard hematological parameters [hemoglobin (Hgb), mean corpuscular volume (MCV), transferrin (Tf) saturation, and zinc protoporphyrin/heme (ZnPP/H)] were compared at 2, 4, 6, 8, and 12 months in iron-sufficient (IS; n = 7) and iron-deficient (ID; n = 7) infant rhesus monkeys. Five CSF metabolite ratios were determined at 4, 8, and 12 months using 1H NMR spectroscopy at 16.4 T and compared between groups and in relation to hematologic parameters. RESULTS: ID infants developed ID (Tf saturation < 25%) by 4 months of age and all became anemic (Hgb < 110 g/L and MCV < 60 fL) at 6 months. Their heme indices normalized by 12 months. Pyruvate/glutamine and phosphocreatine/creatine (PCr/Cr) ratios in CSF were lower in the ID infants by 4 months (P < 0.05). The PCr/Cr ratio remained lower at 8 months (P = 0.02). ZnPP/H, an established blood marker of pre-anemic ID, was positively correlated with the CSF citrate/glutamine ratio (marginal correlation, 0.34; P < 0.001; family wise error rate = 0.001). DISCUSSION: Metabolomic analysis of the CSF is sensitive for detecting the effects of pre-anemic ID on brain energy metabolism. Persistence of a lower PCr/Cr ratio at 8 months, even as hematological measures demonstrated recovery from anemia, indicate that the restoration of brain energy metabolism is delayed. Metabolomic platforms offer a useful tool for early detection of the impact of ID on brain metabolism in infants.


Assuntos
Anemia Ferropriva/líquido cefalorraquidiano , Encéfalo/metabolismo , Ferro/líquido cefalorraquidiano , Metabolômica , Animais , Animais Recém-Nascidos , Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Feminino , Hemoglobinas/líquido cefalorraquidiano , Macaca mulatta , Espectroscopia de Ressonância Magnética , Micronutrientes/administração & dosagem , Micronutrientes/líquido cefalorraquidiano , Protoporfirinas/líquido cefalorraquidiano , Manejo de Espécimes , Transferrina/líquido cefalorraquidiano
12.
Psychosom Med ; 79(8): 888-897, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28178033

RESUMO

OBJECTIVE: Our aim was to evaluate the bacterial profiles of young monkeys as they were weaned into peer groups with a particular focus on Prevotella, an important taxon in both human and nonhuman primates. The weaning of infants and increased social contact with peers is a developmental stage that is likely to affect the gut microbiome. METHODS: Gut bacteria were assessed in 63 rhesus monkeys living in social groups comprised of 4 to 7 individuals. Two groups were assessed prospectively on day 1 and 2 weeks after rehousing away from the mother and group formation. Ten additional groups were assessed at 2 weeks after group establishment. Fecal genomic DNA was extracted and 16S ribosomal RNA sequenced by Illumina MiSeq (5 social groups) and 454-amplicon pyrosequencing (7 social groups). RESULTS: Combining weaned infants into small social groups led to a microbial convergence by 2 weeks (p < .001). Diversity analyses indicated more similar community structure within peer groups than across groups (p < .01). Prevotella was the predominant taxon, and its abundance differed markedly across individuals. Indices of richness, microbial profiles, and less abundant taxa were all associated with the Prevotella levels. Functional Kyoto Encyclopedia of Genes and Genomes analyses suggested corresponding shifts in metabolic pathways. CONCLUSIONS: The formation of small groups of young rhesus monkeys was associated with significant shifts in the gut microbiota. The profiles were closely associated with the abundance of Prevotella, a predominant taxon in the rhesus monkey gut. Changes in the structure of the gut microbiome are likely to induce differences in metabolic and physiologic functioning.


Assuntos
Comportamento Animal/fisiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella , Comportamento Social , Animais , Feminino , Macaca mulatta , Masculino , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S
13.
Am J Primatol ; 79(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28898440

RESUMO

The lower reproductive tract of nonhuman primates is colonized with a diverse microbiota, resembling bacterial vaginosis (BV), a gynecological condition associated with negative reproductive outcomes in women. Our 4 aims were to: (i) assess the prevalence of low Lactobacilli and a BV-like profile in female rhesus monkeys; (ii) quantify cytokines in their cervicovaginal fluid (CVF); (iii) examine the composition and structure of their mucosal microbiota with culture-independent sequencing methods; and (iv) evaluate the potential influence on reproductive success. CVF specimens were obtained from 27 female rhesus monkeys for Gram's staining, and to determine acidity (pH), and quantify proinflammatory cytokines. Based on Nugent's classification, 40% had a score of 7 or higher, which would be indicative of BV in women. Nugent scores were significantly correlated with the pH of the CVF. Interleukin-1ß was present at high concentrations, but not further elevated by high Nugent scores. Vaginal swabs were obtained from eight additional females to determine microbial diversity by rRNA gene amplicon sequencing. At the phylum level, the Firmicutes/Bacteroidetes ratio was low. The relative abundance of Lactobacilli was also low (between 3% and 17%), and 11 other genera were present at >1%. However, neither the microbial diversity in the community structure, nor high Nugent scores, was associated with reduced fecundity. Female monkeys provide an opportunity to understand how reproductive success can be sustained in the presence of a diverse polymicrobial community in the reproductive tract.


Assuntos
Lactobacillus , Macaca mulatta/microbiologia , Vaginose Bacteriana/veterinária , Animais , Feminino , Microbiota , Reprodução , Vagina
14.
Neuroimage ; 117: 408-16, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26037056

RESUMO

The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states, exposures, and/or aging. Diffusion tensor imaging (DTI)-based MRI brain atlases are widely used in both human and macaque brain imaging studies because of the unique contrasts, quantitative diffusion metrics, and diffusion tractography that they can provide. Previous MRI and DTI atlases of the rhesus brain have been limited by low contrast and/or low spatial resolution imaging. Here we present a microscopic resolution MRI/DTI atlas of the rhesus brain based on 10 postmortem brain specimens. The atlas includes both structural MRI and DTI image data, a detailed three-dimensional segmentation of 241 anatomic structures, diffusion tractography, cortical thickness estimates, and maps of anatomic variability among atlas specimens. This atlas incorporates many useful features from previous work, including anatomic label nomenclature and ontology, data orientation, and stereotaxic reference frame, and further extends prior analyses with the inclusion of high-resolution multi-contrast image data.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Macaca mulatta/anatomia & histologia , Animais , Ontologias Biológicas , Masculino
15.
Front Neuroendocrinol ; 35(4): 439-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24699357

RESUMO

The placenta is essential to mammalian pregnancy with many roles beyond just nutrient supply, including both endocrine and immune functions. During the course of evolution, the placenta of higher primates has acquired some unique features, including the capacity to secrete corticotropin-releasing hormone (CRH). In addition, a placental receptor for IgG enables particularly high levels of protective maternal antibody to reach the fetus before birth. This paper reviews the placental biology of primates, and discusses its involvement in adrenocortical hormone activity during pregnancy, the transfer of maternal antibody, and finally the delivery of maternal iron to the fetus, which is needed for normal brain development. An understanding of these vital functions during a full-term, healthy pregnancy provides insights into the consequences of gestational disturbances, such as maternal stress, illness, and undernutrition, which have even larger ramifications if the infant is born premature.


Assuntos
Encéfalo/crescimento & desenvolvimento , Hormônio Liberador da Corticotropina/metabolismo , Feto/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Placenta/metabolismo , Animais , Feminino , Humanos , Gravidez , Primatas/metabolismo
16.
Hum Brain Mapp ; 35(11): 5667-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25044786

RESUMO

Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Vias Neurais/anatomia & histologia , Substância Branca/anatomia & histologia , Algoritmos , Animais , Simulação por Computador , Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador , Macaca mulatta , Modelos Neurológicos , Vias Neurais/fisiologia
17.
Neurochem Res ; 38(3): 573-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269483

RESUMO

Iron deficiency anemia affects many pregnant women and young infants worldwide. The health impact is significant, given iron's known role in many body functions, including oxidative and lipid metabolism, protein synthesis and brain neurochemistry. The following research determined if (1)H NMR spectroscopy-based metabolomic analysis of cerebrospinal fluid (CSF) could detect the adverse influence of early life iron deficiency on the central nervous system. Using a controlled dietary model in 43 infant primates, distinct differences were found in spectra acquired at 600 MHz from the CSF of anemic monkeys. Three metabolite ratios, citrate/pyruvate, citrate/lactate and pyruvate/glutamine ratios, differed significantly in the iron deficient infant and then normalized following the consumption of dietary iron and improvement of clinical indices of anemia in the heme compartment. This distinctive metabolomic profile associated with anemia in the young infant indicates that CSF can be employed to track the neurological effects of iron deficiency and benefits of iron supplementation.


Assuntos
Anemia Ferropriva/líquido cefalorraquidiano , Encéfalo/metabolismo , Metabolismo Energético , Deficiências de Ferro , Metabolômica , Anemia Ferropriva/sangue , Animais , Ácido Cítrico/líquido cefalorraquidiano , Feminino , Glutamina/líquido cefalorraquidiano , Ácido Láctico/líquido cefalorraquidiano , Macaca mulatta/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Ácido Pirúvico/líquido cefalorraquidiano
18.
Microorganisms ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37374982

RESUMO

Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.

19.
Dev Neurosci ; 34(4): 354-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23018452

RESUMO

Iron deficiency affects nearly 2 billion people worldwide, with pregnant women and young children being most severely impacted. Sustained anemia during the first year of life can cause cognitive, attention and motor deficits, which may persist despite iron supplementation. We conducted iTRAQ analyses on cerebrospinal fluid (CSF) from infant monkeys (Macaca mulatta) to identify differential protein expression associated with early iron deficiency. CSF was collected from 5 iron-sufficient and 8 iron-deficient anemic monkeys at weaning age (6-7 months) and again at 12-14 months. Despite consumption of iron-fortified food after weaning, which restored hematological indices into the normal range, expression of 5 proteins in the CSF remained altered. Most of the proteins identified are involved in neurite outgrowth, migration or synapse formation. The results reveal novel ways in which iron deficiency undermines brain growth and results in aberrant neuronal migration and connections. Taken together with gene expression data from rodent models of iron deficiency, we conclude that significant alterations in neuroconnectivity occur in the iron-deficient brain, which may persist even after resolution of the hematological anemia. The compromised brain infrastructure could account for observations of behavioral deficits in children during and after the period of anemia.


Assuntos
Anemia Ferropriva/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/análise , Proteômica/métodos , Fatores Etários , Anemia Ferropriva/complicações , Anemia Ferropriva/dietoterapia , Anemia Ferropriva/embriologia , Animais , Dano Encefálico Crônico/líquido cefalorraquidiano , Dano Encefálico Crônico/etiologia , Resinas de Troca de Cátion , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Feminino , Compostos Ferrosos/administração & dosagem , Compostos Ferrosos/uso terapêutico , Alimentos Fortificados , Macaca mulatta , Masculino , Desnutrição/fisiopatologia , Modelos Animais , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/deficiência , Fragmentos de Peptídeos/análise , Gravidez , Complicações na Gravidez/fisiopatologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Desmame
20.
Data Brief ; 45: 108591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36164307

RESUMO

The effects of early-life iron deficiency anemia (IDA) extend past the blood and include both short- and long-term adverse effects on many tissues including the brain. Prior to IDA, iron deficiency (ID) can cause similar tissue effects, but a sensitive biomarker of iron-dependent brain health is lacking. To determine serum and CSF biomarkers of ID-induced metabolic dysfunction we performed proteomic and metabolomic analysis of serum and CSF at 4- and 6- months from a nonhuman primate model of infantile IDA. LC/MS/MS analyses identified a total of 227 metabolites and 205 proteins in serum. In CSF, we measured 210 metabolites and 1,560 proteins. Data were either processed from a Q-Exactive (Thermo Scientific, Waltham, MA) through Progenesis QI with accurate mass and retention time comparisons to a proprietary small molecule database and Metlin or with raw files imported directly from a Fusion Orbitrap (Thermo Scientific, Waltham, MA) through Sequest in Proteome Discoverer 2.4.0.305 (Thermo Scientific, Waltham, MA) with peptide matches through the latest Rhesus Macaque HMDB database. Metabolite and protein identifiers, p-values, and q-values were utilized for molecular pathway analysis with Ingenuity Pathways Analysis (IPA). We applied multiway distance weighted discrimination (DWD) to identify a weighted sum of the features (proteins or metabolites) that distinguish ID from IS at 4-months (pre-anemic period) and 6-months of age (anemic).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA