Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377397

RESUMO

MOTIVATION: Analyzing metagenomic data can be highly valuable for understanding the function and distribution of antimicrobial resistance genes (ARGs). However, there is a need for standardized and reproducible workflows to ensure the comparability of studies, as the current options involve various tools and reference databases, each designed with a specific purpose in mind. RESULTS: In this work, we have created the workflow ARGprofiler to process large amounts of raw sequencing reads for studying the composition, distribution, and function of ARGs. ARGprofiler tackles the challenge of deciding which reference database to use by providing the PanRes database of 14 078 unique ARGs that combines several existing collections into one. Our pipeline is designed to not only produce abundance tables of genes and microbes but also to reconstruct the flanking regions of ARGs with ARGextender. ARGextender is a bioinformatic approach combining KMA and SPAdes to recruit reads for a targeted de novo assembly. While our aim is on ARGs, the pipeline also creates Mash sketches for fast searching and comparisons of sequencing runs. AVAILABILITY AND IMPLEMENTATION: The ARGprofiler pipeline is a Snakemake workflow that supports the reuse of metagenomic sequencing data and is easily installable and maintained at https://github.com/genomicepidemiology/ARGprofiler.


Assuntos
Antibacterianos , Software , Farmacorresistência Bacteriana/genética , Metagenoma , Metagenômica
2.
Mol Psychiatry ; 26(7): 2854-2871, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33664475

RESUMO

Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.


Assuntos
Lactação , Leite Humano , Animais , Cognição , Feminino , Lactose , Camundongos , Oligossacarídeos
3.
Gastroenterology ; 157(3): 637-646.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095949

RESUMO

BACKGROUND & AIMS: Enteropathy and small-intestinal ulcers are common adverse effects of nonsteroidal anti-inflammatory drugs such as acetylsalicylic acid (ASA). Safe, cytoprotective strategies are needed to reduce this risk. Specific bifidobacteria might have cytoprotective activities, but little is known about these effects in humans. We used serial video capsule endoscopy (VCE) to assess the efficacy of a specific Bifidobacterium strain in healthy volunteers exposed to ASA. METHODS: We performed a single-site, double-blind, parallel-group, proof-of-concept analysis of 75 heathy volunteers given ASA (300 mg) daily for 6 weeks, from July 31 through October 24, 2017. The participants were randomly assigned (1:1) to groups given oral capsules of Bifidobacterium breve (Bif195) (≥5 × 1010 colony-forming units) or placebo daily for 8 weeks. Small-intestinal damage was analyzed by serial VCE at 6 visits. The area under the curve (AUC) for intestinal damage (Lewis score) and the AUC value for ulcers were the primary and first-ranked secondary end points of the trial, respectively. RESULTS: Efficacy data were obtained from 35 participants given Bif195 and 31 given placebo. The AUC for Lewis score was significantly lower in the Bif195 group (3040 ± 1340 arbitrary units) than the placebo group (4351 ± 3195) (P = .0376). The AUC for ulcer number was significantly lower in the Bif195 group (50.4 ± 53.1 arbitrary units) than in the placebo group (75.2 ± 85.3 arbitrary units) (P = .0258). Twelve adverse events were reported from the Bif195 group and 20 from the placebo group. None of the events was determined to be related to Bif195 intake. CONCLUSIONS: In a randomized, double-blind trial of healthy volunteers, we found oral Bif195 to safely reduce the risk of small-intestinal enteropathy caused by ASA. ClinicalTrials.gov no: NCT03228589.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Aspirina/efeitos adversos , Bifidobacterium breve/crescimento & desenvolvimento , Microbioma Gastrointestinal , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/microbiologia , Probióticos/administração & dosagem , Úlcera/prevenção & controle , Adolescente , Adulto , Endoscopia por Cápsula , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Intestino Delgado/patologia , Irlanda , Masculino , Probióticos/efeitos adversos , Fatores de Tempo , Úlcera/induzido quimicamente , Úlcera/microbiologia , Úlcera/patologia , Adulto Jovem
4.
J Antimicrob Chemother ; 74(6): 1484-1493, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843063

RESUMO

BACKGROUND: Reliable phenotypic antimicrobial susceptibility testing can be a challenge in clinical settings in low- and middle-income countries. WGS is a promising approach to enhance current capabilities. AIM: To study diversity and resistance determinants and to predict and compare resistance patterns from WGS data of Acinetobacter baumannii with phenotypic results from classical microbiological testing at a tertiary care hospital in Tanzania. METHODS AND RESULTS: MLST using Pasteur/Oxford schemes yielded eight different STs from each scheme. Of the eight, two STs were identified to be global clones 1 (n = 4) and 2 (n = 1) as per the Pasteur scheme. Resistance testing using classical microbiology determined between 50% and 92.9% resistance across all drugs. Percentage agreement between phenotypic and genotypic prediction of resistance ranged between 57.1% and 100%, with coefficient of agreement (κ) between 0.05 and 1. Seven isolates harboured mutations at significant loci (S81L in gyrA and S84L in parC). A number of novel plasmids were detected, including pKCRI-309C-1 (219000 bp) carrying 10 resistance genes, pKCRI-43-1 (34935 bp) carrying two resistance genes and pKCRI-49-1 (11681 bp) and pKCRI-28-1 (29606 bp), each carrying three resistance genes. New ampC alleles detected included ampC-69, ampC-70 and ampC-71. Global clone 1 and 2 isolates were found to harbour ISAba1 directly upstream of the ampC gene. Finally, SNP-based phylogenetic analysis of the A. baumannii isolates revealed closely related isolates in three clusters. CONCLUSIONS: The validity of the use of WGS in the prediction of phenotypic resistance can be appreciated, but at this stage is not sufficient for it to replace conventional antimicrobial susceptibility testing in our setting.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Acinetobacter/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Criança , Feminino , Genoma Bacteriano , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Tanzânia/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
5.
J Antimicrob Chemother ; 72(2): 385-392, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28115502

RESUMO

OBJECTIVES: Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read mapping shows promise for quantitative resistance monitoring. METHODS: We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based on known antimicrobial consumption in 10 Danish integrated slaughter pig herds. In addition, we evaluated whether fresh or manure floor samples constitute suitable proxies for intestinal sampling, using cfu counting, qPCR and metagenomic shotgun sequencing. RESULTS: Metagenomic read-mapping outperformed cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal samples well when analysed using metagenomics, as they contain the same DNA with the exception of a few contaminating taxa that proliferate in the extraintestinal environment. CONCLUSIONS: We present a workflow, from sampling to interpretation, showing how resistance monitoring can be carried out in swine herds using a metagenomic approach. We propose metagenomic sequencing should be part of routine livestock resistance monitoring programmes and potentially of integrated One Health monitoring in all reservoirs.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia , Metagenômica/métodos , Suínos/microbiologia , Resistência a Tetraciclina , Animais , Contagem de Colônia Microbiana , Dinamarca , Microbiologia Ambiental , Monitoramento Epidemiológico , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real
6.
J Clin Microbiol ; 53(1): 262-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392358

RESUMO

Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified the multilocus sequence type (MLST), haplotype, plasmid replicon, antimicrobial resistance genes, and genetic relatedness by single nucleotide polymorphism (SNP) analysis and genomic deletions. The outbreak affected 2,040 patients, with a fatality rate of 0.5%. Most (83.0%) isolates were multidrug resistant (MDR). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon, the class 1 integron, and the mer operon. The genomic analysis revealed 415 SNP differences overall and 35 deletions among 33 of the isolates subjected to whole-genome sequencing. In comparison with other genomes of H58, the Zambian isolates separated from genomes from Central Africa and India by 34 and 52 SNPs, respectively. The phylogenetic analysis indicates that 32 of the 33 isolates sequenced belonged to a tight clonal group distinct from other H58 genomes included in the study. The small numbers of SNPs identified within this group are consistent with the short-term transmission that can be expected over a period of 2 years. The phylogenetic analysis and deletions suggest that a single MDR clone was responsible for the outbreak, during which occasional other S. Typhi lineages, including sensitive ones, continued to cocirculate. The common view is that the emerging global S. Typhi haplotype, H58B, containing the MDR IncHI1 plasmid is responsible for the majority of typhoid infections in Asia and sub-Saharan Africa; we found that a new variant of the haplotype harboring a chromosomally translocated region containing the MDR islands of IncHI1 plasmid has emerged in Zambia. This could change the perception of the term "classical MDR typhoid" currently being solely associated with the IncHI1 plasmid. It might be more common than presently thought that S. Typhi haplotype H58B harbors the IncHI1 plasmid or a chromosomally translocated MDR region or both.


Assuntos
Surtos de Doenças , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Genômica , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Antibacterianos/farmacologia , Criança , Pré-Escolar , Cromossomos Bacterianos , Conjugação Genética , Evolução Molecular , Feminino , Ordem dos Genes , Genes Bacterianos , Haplótipos , História do Século XXI , Humanos , Masculino , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Mutação , Filogenia , Plasmídeos , Polimorfismo de Nucleotídeo Único , Salmonella typhi/classificação , Deleção de Sequência , Translocação Genética , Febre Tifoide/história , Zâmbia/epidemiologia
7.
J Clin Microbiol ; 52(5): 1529-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574292

RESUMO

One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is--that is, which species it is. The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremendous impact on the field of microbiology. Nevertheless, the method has been found to have a number of shortcomings. In the current study, we trained and benchmarked five methods for whole-genome sequence-based prokaryotic species identification on a common data set of complete genomes: (i) SpeciesFinder, which is based on the complete 16S rRNA gene; (ii) Reads2Type that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii) the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which is based on species-specific functional protein domain profiles; and finally (v) KmerFinder, which examines the number of cooccurring k-mers (substrings of k nucleotides in DNA sequence data). The performances of the methods were subsequently evaluated on three data sets of short sequence reads or draft genomes from public databases. In total, the evaluation sets constituted sequence data from more than 11,000 isolates covering 159 genera and 243 species. Our results indicate that methods that sample only chromosomal, core genes have difficulties in distinguishing closely related species which only recently diverged. The KmerFinder method had the overall highest accuracy and correctly identified from 93% to 97% of the isolates in the evaluations sets.


Assuntos
Benchmarking/métodos , Classificação/métodos , Genômica/métodos , Archaea/genética , Bactérias/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Tipagem de Sequências Multilocus/métodos , RNA Ribossômico 16S/genética
8.
Appl Environ Microbiol ; 79(9): 2944-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435887

RESUMO

Listeria monocytogenes is a food-borne human-pathogenic bacterium that can cause infections with a high mortality rate. It has a remarkable ability to persist in food processing facilities. Here we report the genome sequences for two L. monocytogenes strains (N53-1 and La111) that were isolated 6 years apart from two different Danish fish processers. Both strains are of serotype 1/2a and belong to a highly persistent DNA subtype (random amplified polymorphic DNA [RAPD] type 9). We demonstrate using in silico analyses that both strains belong to the multilocus sequence typing (MLST) type ST121 that has been isolated as a persistent subtype in several European countries. The purpose of this study was to use genome analyses to identify genes or proteins that could contribute to persistence. In a genome comparison, the two persistent strains were extremely similar and collectively differed from the reference lineage II strain, EGD-e. Also, they differed markedly from a lineage I strain (F2365). On the proteome level, the two strains were almost identical, with a predicted protein homology of 99.94%, differing at only 2 proteins. No single-nucleotide polymorphism (SNP) differences were seen between the two strains; in contrast, N53-1 and La111 differed from the EGD-e reference strain by 3,942 and 3,471 SNPs, respectively. We included a persistent L. monocytogenes strain from the United States (F6854) in our comparisons. Compared to nonpersistent strains, all three persistent strains were distinguished by two genome deletions: one, of 2,472 bp, typically contains the gene for inlF, and the other, of 3,017 bp, includes three genes potentially related to bacteriocin production and transport (lmo2774, lmo2775, and the 3'-terminal part of lmo2776). Further studies of highly persistent strains are required to determine if the absence of these genes promotes persistence. While the genome comparison did not point to a clear physiological explanation of the persistent phenotype, the remarkable similarity between the two strains indicates that subtypes with specific traits are selected for in the food processing environment and that particular genetic and physiological factors are responsible for the persistent phenotype.


Assuntos
Microbiologia de Alimentos , Genoma Bacteriano/genética , Listeria monocytogenes/classificação , Listeriose/microbiologia , Salmão/microbiologia , Alimentos Marinhos/microbiologia , Animais , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dinamarca , Conservação de Alimentos , Indústria de Processamento de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Fatores de Tempo
9.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526643

RESUMO

The global surveillance and outbreak investigation of antimicrobial resistance (AMR) is amidst a paradigm shift from traditional biology to bioinformatics. This is due to developments in whole-genome-sequencing (WGS) technologies, bioinformatics tools, and reduced costs. The increased use of WGS is accompanied by challenges such as standardization, quality control (QC), and data sharing. Thus, there is global need for inter-laboratory WGS proficiency test (PT) schemes to evaluate laboratories' capacity to produce reliable genomic data. Here, we present the results of the first iteration of the Genomic PT (GPT) organized by the Global Capacity Building Group at the Technical University of Denmark in 2020. Participating laboratories sequenced two isolates and corresponding DNA of Salmonella enterica, Escherichia coli and Campylobacter coli, using WGS methodologies routinely employed at their laboratories. The participants' ability to obtain consistently good-quality WGS data was assessed based on several QC WGS metrics. A total of 21 laboratories from 21 European countries submitted WGS and meta-data. Most delivered high-quality sequence data with only two laboratories identified as overall underperforming. The QC metrics, N50 and number of contigs, were identified as good indicators for high-sequencing quality. We propose QC thresholds for N50 greater than 20 000 and 25 000 for Campylobacter coli and Escherichia coli, respectively, and number of contigs >200 bp greater than 225, 265 and 100 for Salmonella enterica, Escherichia coli and Campylobacter coli, respectively. The GPT2020 results confirm the importance of systematic QC procedures, ensuring the submission of reliable WGS data for surveillance and outbreak investigation to meet the requirements of the paradigm shift in methodology.


Assuntos
Antibacterianos , Salmonella enterica , Humanos , Antibacterianos/farmacologia , União Europeia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Genômica , Salmonella enterica/genética
10.
BMC Genomics ; 13: 88, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409488

RESUMO

BACKGROUND: Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over time. The core genes--the genes that are conserved in all (or most) members of a genus or species--are potentially good candidates for investigating genomic variation in phylogeny and epidemiology. RESULTS: We identify a set of 2,882 core genes clusters based on 73 publicly available Salmonella enterica genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher confidence. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. For the most variable core genes, the variance in amino acid sequences is higher than for the corresponding nucleotide sequences, suggesting that there is a positive selection towards mutations leading to amino acid changes. CONCLUSIONS: Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important especially in trend analysis.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Genes Bacterianos/genética , Variação Genética/genética , Genômica , Salmonella enterica/classificação , Salmonella enterica/genética , Sequência Conservada , Epidemiologia Molecular , Família Multigênica/genética , Filogenia , Salmonella enterica/fisiologia
11.
Microb Ecol ; 63(3): 651-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22031452

RESUMO

Six bacterial genera containing species commonly used as probiotics for human consumption or starter cultures for food fermentation were compared and contrasted, based on publicly available complete genome sequences. The analysis included 19 Bifidobacterium genomes, 21 Lactobacillus genomes, 4 Lactococcus and 3 Leuconostoc genomes, as well as a selection of Enterococcus (11) and Streptococcus (23) genomes. The latter two genera included genomes from probiotic or commensal as well as pathogenic organisms to investigate if their non-pathogenic members shared more genes with the other probiotic genomes than their pathogenic members. The pan- and core genome of each genus was defined. Pairwise BLASTP genome comparison was performed within and between genera. It turned out that pathogenic Streptococcus and Enterococcus shared more gene families than did the non-pathogenic genomes. In silico multilocus sequence typing was carried out for all genomes per genus, and the variable gene content of genomes was compared within the genera. Informative BLAST Atlases were constructed to visualize genomic variation within genera. The clusters of orthologous groups (COG) classes of all genes in the pan- and core genome of each genus were compared. In addition, it was investigated whether pathogenic genomes contain different COG classes compared to the probiotic or fermentative organisms, again comparing their pan- and core genomes. The obtained results were compared with published data from the literature. This study illustrates how over 80 genomes can be broadly compared using simple bioinformatic tools, leading to both confirmation of known information as well as novel observations.


Assuntos
Bifidobacterium/genética , Genoma Bacteriano , Genômica , Lactobacillus/genética , Probióticos/classificação , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Humanos , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Probióticos/química , Probióticos/isolamento & purificação
12.
Front Nutr ; 9: 920362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873420

RESUMO

Background: Human milk oligosaccharides (HMOs) have important biological functions for a healthy development in early life. Objective: This study aimed to investigate gut maturation effects of an infant formula containing five HMOs (2'-fucosyllactose, 2',3-di-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose, and 6'-sialyllactose). Methods: In a multicenter study, healthy infants (7-21 days old) were randomly assigned to a standard cow's milk-based infant formula (control group, CG); the same formula with 1.5 g/L HMOs (test group 1, TG1); or with 2.5 g/L HMOs (test group 2, TG2). A human milk-fed group (HMG) was enrolled as a reference. Fecal samples collected at baseline (n∼150/formula group; HMG n = 60), age 3 (n∼140/formula group; HMG n = 65) and 6 (n∼115/formula group; HMG n = 60) months were analyzed for microbiome (shotgun metagenomics), metabolism, and biomarkers. Results: At both post-baseline visits, weighted UniFrac analysis indicated different microbiota compositions in the two test groups (TGs) compared to CG (P < 0.01) with coordinates closer to that of HMG. The relative abundance of Bifidobacterium longum subsp. infantis (B. infantis) was higher in TGs vs. CG (P < 0.05; except at 6 months: TG2 vs. CG P = 0.083). Bifidobacterium abundance was higher by ∼45% in TGs vs. CG at 6-month approaching HMG. At both post-baseline visits, toxigenic Clostridioides difficile abundance was 75-85% lower in TGs vs. CG (P < 0.05) and comparable with HMG. Fecal pH was significantly lower in TGs vs. CG, and the overall organic acid profile was different in TGs vs. CG, approaching HMG. At 3 months, TGs (vs. CG) had higher secretory immunoglobulin A (sIgA) and lower alpha-1-antitrypsin (P < 0.05). At 6 months, sIgA in TG2 vs. CG remained higher (P < 0.05), and calprotectin was lower in TG1 (P < 0.05) vs. CG. Conclusion: Infant formula with a specific blend of five HMOs supports the development of the intestinal immune system and gut barrier function and shifts the gut microbiome closer to that of breastfed infants with higher bifidobacteria, particularly B. infantis, and lower toxigenic Clostridioides difficile. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/], identifier [NCT03722550].

13.
Microorganisms ; 9(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946144

RESUMO

Hospitalization and treatment with antibiotics increase the risk of acquiring multidrug-resistant bacteria due to antibiotic-mediated changes in patient microbiota. This study aimed to investigate how broad- and narrow-spectrum antibiotics affect the gut microbiome and the resistome in antibiotic naïve patients during neurointensive care. Patients admitted to the neurointensive care unit were treated with broad-spectrum (meropenem or piperacillin/tazobactam) or narrow-spectrum antibiotic treatment (including ciprofloxacin, cefuroxime, vancomycin and dicloxacillin) according to clinical indications. A rectal swab was collected from each patient before and after 5-7 days of antibiotic therapy (N = 34), respectively. Shotgun metagenomic sequencing was performed and the composition of metagenomic species (MGS) was determined. The resistome was characterized with CARD RGI software and the CARD database. As a measure for selection pressure in the patient, we used the sum of the number of days with each antibiotic (antibiotic days). We observed a significant increase in richness and a tendency for an increase in the Shannon index after narrow-spectrum treatment. For broad-spectrum treatment the effect was more diverse, with some patients increasing and some decreasing in richness and Shannon index. This was studied further by comparison of patients who had gained or lost >10 MGS, respectively. Selection pressure was significantly higher in patients with decreased richness and a decreased Shannon index who received the broad treatment. A decrease in MGS richness was significantly correlated to the number of drugs administered and the selection pressure in the patient. Bray-Curtis dissimilarities were significant between the pre- and post-treatment of samples in the narrow group, indicating that the longer the narrow-spectrum treatment, the higher the differences between the pre- and the post-treatment microbial composition. We did not find significant differences between pre- and post-treatment for both antibiotic spectrum treatments; however, we observed that most of the antibiotic class resistance genes were higher in abundance in post-treatment after broad-spectrum treatment.

14.
Microb Ecol ; 60(4): 708-20, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20623278

RESUMO

Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics trees, and to identify the pan- and core genomes of this set of sequenced strains. A hierarchical clustering of variable genes allowed clear separation of the strains into clusters, including known pathotypes; clinically relevant serotypes can also be resolved in this way. In contrast, when in silico MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group of Enterobacteriaceae.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Mapeamento Cromossômico , Escherichia coli/classificação , Dados de Sequência Molecular , Filogenia
15.
Sci Rep ; 10(1): 2728, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066773

RESUMO

Streptococcus gordonii and Streptococcus sanguinis belong to the Mitis group streptococci, which mostly are commensals in the human oral cavity. Though they are oral commensals, they can escape their niche and cause infective endocarditis, a severe infection with high mortality. Several virulence factors important for the development of infective endocarditis have been described in these two species. However, the background for how the commensal bacteria, in some cases, become pathogenic is still not known. To gain a greater understanding of the mechanisms of the pathogenic potential, we performed a comparative analysis of 38 blood culture strains, S. sanguinis (n = 20) and S. gordonii (n = 18) from patients with verified infective endocarditis, along with 21 publicly available oral isolates from healthy individuals, S. sanguinis (n = 12) and S. gordonii (n = 9). Using whole genome sequencing data of the 59 streptococci genomes, functional profiles were constructed, using protein domain predictions based on the translated genes. These functional profiles were used for clustering, phylogenetics and machine learning. A clear separation could be made between the two species. No clear differences between oral isolates and clinical infective endocarditis isolates were found in any of the 675 translated core-genes. Additionally, random forest-based machine learning and clustering of the pan-genome data as well as amino acid variations in the core-genome could not separate the clinical and oral isolates. A total of 151 different virulence genes was identified in the 59 genomes. Among these homologs of genes important for adhesion and evasion of the immune system were found in all of the strains. Based on the functional profiles and virulence gene content of the genomes, we believe that all analysed strains had the ability to become pathogenic.


Assuntos
Endocardite Bacteriana/microbiologia , Endocardite/microbiologia , Genoma Bacteriano , Infecções Estreptocócicas/microbiologia , Streptococcus gordonii/genética , Streptococcus sanguis/genética , Fatores de Virulência/genética , Endocardite/patologia , Endocardite Bacteriana/patologia , Endocárdio/microbiologia , Endocárdio/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Boca/microbiologia , Boca/patologia , Filogenia , Infecções Estreptocócicas/patologia , Streptococcus gordonii/classificação , Streptococcus gordonii/isolamento & purificação , Streptococcus gordonii/patogenicidade , Streptococcus sanguis/classificação , Streptococcus sanguis/isolamento & purificação , Streptococcus sanguis/patogenicidade , Simbiose/fisiologia , Virulência , Fatores de Virulência/classificação , Fatores de Virulência/metabolismo
16.
Front Public Health ; 8: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158739

RESUMO

One Health surveillance of antimicrobial resistance (AMR) depends on a harmonized method for detection of AMR. Metagenomics-based surveillance offers the possibility to compare resistomes within and between different target populations. Its potential to be embedded into policy in the future calls for a timely and integrated knowledge dissemination strategy. We developed a blended training (e-learning and a workshop) on the use of metagenomics in surveillance of pathogens and AMR. The objectives were to highlight the potential of metagenomics in the context of integrated surveillance, to demonstrate its applicability through hands-on training and to raise awareness to bias factors. The target participants included staff of competent authorities responsible for AMR monitoring and academic staff. The training was organized in modules covering the workflow, requirements, benefits and challenges of surveillance by metagenomics. The training had 41 participants. The face-to-face workshop was essential to understand the expectations of the participants about the transition to metagenomics-based surveillance. After revision of the e-learning, we released it as a Massive Open Online Course (MOOC), now available at https://www.coursera.org/learn/metagenomics. This course has run in more than 20 sessions, with more than 3,000 learners enrolled, from more than 120 countries. Blended learning and MOOCs are useful tools to deliver knowledge globally and across disciplines. The released MOOC can be a reference knowledge source for international players in the application of metagenomics in surveillance.


Assuntos
Antibacterianos , Educação a Distância , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Aprendizagem , Metagenômica
17.
PLoS One ; 14(1): e0210368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640944

RESUMO

Human viral pathogens are a major public health threat. Reliable information that accurately describes and characterizes the global occurrence and transmission of human viruses is essential to support national and global priority setting, public health actions, and treatment decisions. However, large areas of the globe are currently without surveillance due to limited health care infrastructure and lack of international cooperation. We propose a novel surveillance strategy, using metagenomic analysis of toilet material from international air flights as a method for worldwide viral disease surveillance. The aim of this study was to design, implement, and evaluate a method for viral analysis of airplane toilet waste enabling simultaneous detection and quantification of a wide range of human viral pathogens. Toilet waste from 19 international airplanes was analyzed for viral content, using viral capture probes followed by high-throughput sequencing. Numerous human pathogens were detected including enteric and respiratory viruses. Several geographic trends were observed with samples originating from South Asia having significantly higher viral species richness as well as higher abundances of salivirus A, aichivirus A and enterovirus B, compared to samples originating from North Asia and North America. In addition, certain city specific trends were observed, including high numbers of rotaviruses in airplanes departing from Islamabad. Based on this study we believe that central sampling and analysis at international airports could be a useful supplement for global viral surveillance, valuable for outbreak detection and for guiding public health resources.


Assuntos
Aeronaves , Aparelho Sanitário/virologia , Esgotos/virologia , Vírus/genética , Vírus/isolamento & purificação , Viagem Aérea , Doenças Transmissíveis/epidemiologia , Monitoramento Epidemiológico , Humanos , Metagenômica , Vigilância em Saúde Pública , Banheiros , Viroses/epidemiologia , Vírus/patogenicidade
18.
PLoS One ; 14(10): e0222531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600207

RESUMO

BACKGROUND: Worldwide, the number of emerging and re-emerging infectious diseases is increasing, highlighting the importance of global disease pathogen surveillance. Traditional population-based methods may fail to capture important events, particularly in settings with limited access to health care, such as urban informal settlements. In such environments, a mixture of surface water runoff and human feces containing pathogenic microorganisms could be used as a surveillance surrogate. METHOD: We conducted a temporal metagenomic analysis of urban sewage from Kibera, an urban informal settlement in Nairobi, Kenya, to detect and quantify bacterial and associated antimicrobial resistance (AMR) determinants, viral and parasitic pathogens. Data were examined in conjunction with data from ongoing clinical infectious disease surveillance. RESULTS: A large variation of read abundances related to bacteria, viruses, and parasites of medical importance, as well as bacterial associated antimicrobial resistance genes over time were detected. Significant increased abundances were observed for a number of bacterial pathogens coinciding with higher abundances of AMR genes. Vibrio cholerae as well as rotavirus A, among other virus peaked in several weeks during the study period whereas Cryptosporidium spp. and Giardia spp, varied more over time. CONCLUSION: The metagenomic surveillance approach for monitoring circulating pathogens in sewage was able to detect putative pathogen and resistance loads in an urban informal settlement. Thus, valuable if generated in real time to serve as a comprehensive infectious disease agent surveillance system with the potential to guide disease prevention and treatment. The approach may lead to a paradigm shift in conducting real-time global genomics-based surveillance in settings with limited access to health care.


Assuntos
Bactérias/genética , Doenças Transmissíveis/genética , Metagenoma/genética , Microbiologia da Água , Animais , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Humanos , Quênia/epidemiologia , Metagenômica/métodos , Parasitos/genética , Parasitos/patogenicidade , Aceitação pelo Paciente de Cuidados de Saúde , Esgotos/microbiologia , Esgotos/parasitologia , Esgotos/virologia , Vírus/genética , Vírus/patogenicidade , Água/análise
19.
Nat Commun ; 10(1): 1124, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850636

RESUMO

Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Metagenoma , Esgotos/microbiologia , África , Ásia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Monitoramento Epidemiológico , Europa (Continente) , Humanos , Metagenômica/métodos , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , América do Norte , Oceania , Saúde da População , Fatores Socioeconômicos , América do Sul
20.
Biomed Res Int ; 2018: 2087693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487865

RESUMO

OBJECTIVE: To determine molecular epidemiology of methicillin-resistant S. aureus in Tanzania using whole genome sequencing. METHODS: DNA from 33 Staphylococcus species was recovered from subcultured archived Staphylococcus isolates. Whole genome sequencing was performed on Illumina Miseq using paired-end 2 × 250 bp protocol. Raw sequence data were analyzed using online tools. RESULTS: Full susceptibility to vancomycin and chloramphenicol was observed. Thirteen isolates (43.3%) resisted cefoxitin and other antimicrobials tested. Multilocus sequence typing revealed 13 different sequence types among the 30 S. aureus isolates, with ST-8 (n = seven, 23%) being the most common. Gene detection in S. aureus stains were as follows: mecA, 10 (33.3%); pvl, 5 (16.7%); tst, 2 (6.7%). The SNP difference among the six Tanzanian ST-8 MRSA isolates ranged from 24 to 196 SNPs and from 16 to 446 SNPs when using the USA300_FPR3757 or the USA500_2395 as a reference, respectively. The mutation rate was 1.38 × 10-11 SNPs/site/year or 1.4 × 10-6 SNPs/site/year as estimated by USA300_FPR3757 or the USA500_2395, respectively. CONCLUSION: S. aureus isolates causing infections in hospitalized patients in Moshi are highly diverse and epidemiologically unrelated. Temporal phylogenetic analysis provided better resolution on transmission and introduction of MRSA and it may be important to include this in future routines.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Antibacterianos/uso terapêutico , Cloranfenicol/uso terapêutico , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Epidemiologia Molecular/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Infecções Estafilocócicas/tratamento farmacológico , Tanzânia/epidemiologia , Centros de Atenção Terciária , Vancomicina/uso terapêutico , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA