RESUMO
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Assuntos
Candida albicans , Proteínas Fúngicas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , beta-Glucanas , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Caspofungina/farmacologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Glucanos/metabolismo , Camundongos , beta-Glucanas/metabolismoRESUMO
Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.
Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neutrófilos/imunologia , Fatores de Transcrição/metabolismo , Virulência , beta-Glucanas/imunologia , Animais , Candidíase/imunologia , Candidíase/microbiologia , Parede Celular , Proteínas Fúngicas/genética , Camundongos , Camundongos Endogâmicos ICR , Neutrófilos/microbiologia , Fatores de Transcrição/genéticaRESUMO
Shielding the immunogenic cell wall epitope ß(1, 3)-glucan under an outer layer of mannosylated glycoproteins is an essential virulence factor deployed by Candida albicans during systemic infection. Accordingly, mutants with increased ß(1, 3)-glucan exposure (unmasking) display increased immunostimulatory capabilities in vitro and attenuated virulence during systemic infection in mice. However, little work has been done to assess the impact of increased unmasking during the two most common manifestations of candidiasis, namely, oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC). We have shown previously that the expression of a single hyperactive allele of the MAP3K STE11ΔN467 induces unmasking via the Cek1 MAPK pathway, attenuates fungal burden, and prolongs survival during systemic infection in mice. Here, we expand on these findings and show that infection with an unmasked STE11ΔN467 mutant also impacts disease progression during OPC and VVC murine infection models. Male mice sublingually infected with the STE11ΔN467 mutant showed a significant reduction in tongue fungal burden at 2 days postinfection and a modest reduction at 5 days postinfection. However, we find that selection for STE11ΔN467 suppressor mutants that no longer display increased unmasking occurs within the oral cavity and is likely responsible for the restoration of fungal burden trends to wild-type levels later in the infection. In the VVC infection model, no attenuation in fungal burden was observed. However, polymorphonuclear cell recruitment and interleukin-1ß (IL-1ß) levels within the vaginal lumen, markers of immunopathogenesis, were increased in mice infected with unmasked STE11ΔN467 cells. Thus, our data suggest a niche-specific impact for unmasking on disease progression.
Assuntos
Candidíase Bucal , Candidíase Vulvovaginal , Candidíase , Animais , Feminino , Masculino , Camundongos , Candida albicans , Candidíase/microbiologia , Candidíase Vulvovaginal/microbiologia , Progressão da Doença , GlucanosRESUMO
To successfully induce disease, Candida albicans must effectively evade the host immune system. One mechanism used by C. albicans to achieve this is to mask immunogenic ß(1,3)-glucan epitopes within its cell wall under an outer layer of mannosylated glycoproteins. Consequently, induction of ß(1,3)-glucan exposure (unmasking) via genetic or chemical manipulation increases fungal recognition by host immune cells in vitro and attenuates disease during systemic infection in mice. Treatment with the echinocandin caspofungin is one of the most potent drivers of ß(1,3)-glucan exposure. Several reports using murine infection models suggest a role for the immune system, and specifically host ß(1,3)-glucan receptors, in mediating the efficacy of echinocandin treatment in vivo. However, the mechanism by which caspofungin-induced unmasking occurs is not well understood. In this report, we show that foci of unmasking co-localize with areas of increased chitin within the yeast cell wall in response to caspofungin, and that inhibition of chitin synthesis via nikkomycin Z attenuates caspofungin-induced ß(1,3)-glucan exposure. Furthermore, we find that both the calcineurin and Mkc1 mitogen-activated protein kinase pathways work synergistically to regulate ß(1,3)-glucan exposure and chitin synthesis in response to drug treatment. When either of these pathways are interrupted, it results in a bimodal population of cells containing either high or low chitin content. Importantly, increased unmasking correlates with increased chitin content within these cells. Microscopy further indicates that caspofungin-induced unmasking correlates with actively growing cells. Collectively, our work presents a model in which chitin synthesis induces unmasking within the cell wall in response to caspofungin in growing cells. IMPORTANCE Systemic candidiasis has reported mortality rates ranging from 20% to 40%. The echinocandins, including caspofungin, are first-line antifungals used to treat systemic candidiasis. However, studies in mice have shown that echinocandin efficacy relies on both its cidal impacts on Candida albicans, as well as a functional immune system to successfully clear invading fungi. In addition to direct C. albicans killing, caspofungin increases exposure (unmasking) of immunogenic ß(1,3)-glucan moieties. To evade immune detection, ß(1,3)-glucan is normally masked within the C. albicans cell wall. Consequently, unmasked ß(1,3)-glucan renders these cells more visible to the host immune system and attenuates disease progression. Therefore, discovery of how caspofungin-induced unmasking occurs is needed to elucidate how the drug facilitates host immune system-mediated clearance in vivo. We report a strong and consistent correlation between chitin deposition and unmasking in response to caspofungin and propose a model in which altered chitin synthesis drives increased unmasking during drug exposure.