Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Prev Vet Med ; 221: 106051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918209

RESUMO

Peste des petits ruminants (PPR) is a highly contagious and fatal disease of mostly domestic goats and sheep. First reported in Uganda in 2007, the extent of peste des petits ruminants virus (PPRV) exposure, geographical distribution and risk factors of its transmission and spread are not clearly understood. In this study, we used cluster random sampling methodology to select study villages from three districts representing three different production systems along Uganda's "cattle corridor". Between October and December 2022, 2520 goat and sheep serum samples were collected from 252 households with no history of PPR vaccination in the past one year. The household heads were interviewed to assess possible risk factors of PPRV transmission using a structured questionnaire. The serum samples were screened with a commercial competitive enzyme-linked immunosorbent assay (cELISA) for PPRV antibodies. The determined overall true seroprevalence of PPRV was 27.3% [95% CI: 25.4-29.1]. The seroprevalence of PPRV antibodies in different production systems was 44.1% [95% CI: 40.6-47.7], 31.7% [95% CI: 28.4-35.0] and 6.1% [95% CI: 4.4-7.9] for pastoral, agropastoral and mixed crop-livestock production systems respectively. A mixed-effects multivariable logistic regression model revealed strong statistical evidence of association between female animals and PPRV antibody seropositivity compared to males [OR= 2.45, 95% CI: 1.7-3.5, p < 0.001]. The likelihood of being PPRV antibody seropositive significantly increased with increasing small ruminant age. Animals older than 3 years were more than three times as likely to be PPRV seropositive compared to animals aged under 1 year [OR= 3.41, 95% CI: 2.39-4.85, p < 0.001]. There was no statistical evidence of association between small ruminant species and PPRV antibody seropositivity (p = 0.423). Village flocks that interacted with neighboring flocks daily during grazing (IRR = 1.59, 95% CI: 1.19-2.13) and watering around swamps (IRR = 1.59, 95% CI: 1.19-2.13) were highly correlated with increased number of PPRV seropositive animals as compared to flocks that were more restricted in grazing and watered around other water sources other than swamps. Flocks from pastoral and agropastoral production systems were more than 10 times more likely to have seropositive animals than mixed crop-livestock flocks. Targeting PPR control interventions (vaccination and livestock movement control) to pastoral and agro-pastoral small ruminant production systems that are very prone to PPR incursions is recommended to prevent PPRV spread to low-risk smallholder mixed crop-livestock production systems.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Masculino , Feminino , Animais , Ovinos , Bovinos , Peste dos Pequenos Ruminantes/epidemiologia , Estudos Soroepidemiológicos , Uganda/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Fatores de Risco , Cabras , Anticorpos Antivirais , Gado
2.
Transbound Emerg Dis ; 69(5): e1642-e1658, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35231154

RESUMO

Peste des Petits Ruminants (PPR) is a transboundary, highly contagious, and fatal disease of small ruminants. PPR causes global annual economic losses of between USD 1.5 and 2.0 billion across more than 70 affected countries. Despite the commercial availability of effective PPR vaccines, lack of financial and technical commitment to PPR control coupled with a dearth of refined PPR risk profiling data in different endemic countries has perpetuated PPR virus transmission. In Uganda, over the past 5 years, PPR has extended from northeastern Uganda (Karamoja) with sporadic incursions in other districts /regions. To identify disease cluster hotspot trends that would facilitate the design and implementation of PPR risk-based control methods (including vaccination), we employed the space-time cube approach to identify trends in the clustering of outbreaks in neighbouring space-time cells using confirmed PPR outbreak report data (2007-2020). We also used negative binomial and logistic regression models and identified high small ruminant density, extended road length, low annual precipitation and high soil water index as the most important drivers of PPR in Uganda. The study identified (with 90-99% confidence) five PPR disease hotspot trend categories across subregions of Uganda. Diminishing hotspots were identified in the Karamoja region whereas consecutive, sporadic, new and emerging hotspots were identified in central and southwestern districts of Uganda. Inter-district and cross-border small ruminant movement facilitated by longer road stretches and animal comingling precipitate PPR outbreaks as well as PPR virus spread from its initial Karamoja focus to the central and southwestern Uganda. There is therefore urgent need to prioritize considerable vaccination coverage to obtain the required herd immunity among small ruminants in the new hotspot areas to block transmission to further emerging hotspots. Findings of this study provide a basis for more robust timing and prioritization of control measures including vaccination.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Análise por Conglomerados , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Cabras , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/prevenção & controle , Ruminantes , Solo , Uganda/epidemiologia , Água
3.
J Environ Public Health ; 2021: 8881191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594384

RESUMO

Introduction: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis. The Uganda Ministry of Health received alerts of suspected viral haemorrhagic fever in humans from Kiruhura, Buikwe, Kiboga, and Mityana districts. Laboratory results from Uganda Virus Research Institute indicated that human cases were positive for Rift Valley fever virus (RVFV) by polymerase chain reaction. We investigated to determine the scope of outbreaks, identify exposure factors, and recommend evidence-based control and prevention measures. Methods: A suspected case was defined as a person with acute fever onset, negative malaria test result, and at least two of the following symptoms: headache, muscle or joint pain, bleeding, and any gastroenteritis symptom (nausea, vomiting, abdominal pain, diarrhoea) in a resident of Kiruhura, Buikwe, Mityana, and Kiboga districts from 1st October 2017 to 30th January 2018. A confirmed case was defined as a suspected case with laboratory confirmation by either detection of RVF nucleic acid by reverse-transcriptase polymerase chain reaction (RT-PCR) or demonstration of serum IgM or IgG antibodies by ELISA. Community case finding was conducted in all affected districts. In-depth interviews were conducted with human cases that were infected with RVF who included herdsmen and slaughterers/meat handlers to identify exposure factors for RVF infection. A total of 24 human and 362 animal blood samples were tested. Animal blood samples were purposively collected from farms that had reported stormy abortions in livestock and unexplained death of animals after a short illness (107 cattle, 83 goats, and 43 sheep). Convenient sampling for the wildlife (10 zebras, 1 topi, and 1 impala) was conducted to investigate infection in animals from Kiruhura, Buikwe, Mityana, and Kiboga districts. Human blood was tested for anti-RVFV IgM and IgG and animal blood for anti-RVFV IgG. Environmental assessments were conducted during the outbreaks in all the affected districts. Results: Sporadic RVF outbreaks occurred from mid-October 2017 to mid-January 2018 affecting humans, domestic animals, and wildlife. Human cases were reported from Kiruhura, Buikwe, Kiboga, and Mityana districts. Of the 24 human blood samples tested, anti-RVFV IgG was detected in 7 (29%) human samples; 1 human sample had detectable IgM only, and 6 had both IgM and IgG. Three of the seven confirmed human cases died among humans. Results from testing animal blood samples obtained from Kiruhura district indicated that 44% (64/146) cattle, 46% (35/76) goats, and 45% (9/20) sheep tested positive for RVF. Among wildlife, (1/10) zebras, (1/1) topi, and (1/1) impala tested positive for RVFV by serological tests. One blood sample from sheep in Kiboga district tested RVFV positive. All the human cases were exposed through contact or consumption of meat from infected animals. Conclusion: RVF outbreaks occurred in humans and animals in Kiruhura, Buikwe, Mityana, and Kiboga districts. Human cases were potentially infected through contact with infected animals and their products.


Assuntos
Surtos de Doenças , Febre do Vale de Rift , Animais , Surtos de Doenças/veterinária , Humanos , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA