RESUMO
Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. This study was designed to investigate the effect of a Toll-like receptor 4 monoclonal antibody (TLR4 mAb) on mmLDL-induced endothelium-dependent vasodilation (EDV) impairment in mouse mesenteric arteries and to explore the underlying mechanism. Animals were divided into a normal control group, an mmLDL treatment group, and a TLR4 mAb intervention group. The serum concentrations of IL-1ß and TNF-α were detected using enzyme-linked immunosorbent assays (ELISAs). EDV function was measured using a microvascular tension tracing method. The protein levels and mRNA expression of IL-1ß and TNF-α in vascular tissue were detected using western blot analysis and reverse transcription polymerase chain reaction, respectively. TLR4 mAb improved mmLDL-induced EDV functional impairment in a dose-dependent manner. TLR4 mAb significantly upregulated KCa3.1 and KCa2.3 channel protein levels and downregulated TNF-α and IL-1ß expression. These effects were possibly associated with the competitive antagonism of TLR4 mAb on the TLR4 signaling pathway and the downstream NF-κB p65 and p38 MAPK pathways, which are activated by mmLDL. In conclusion, pretreatment with TLR4 mAb lessens mmLDL-induced EDV dysfunction and inhibits overexpression of inflammatory factors. Regulation of the TLR4 pathway, as well as its downstream NF-κB p65 and p38 MAPK pathways, may be an effective strategy for the prevention and treatment of cardiovascular diseases.
Assuntos
Anticorpos Monoclonais/farmacologia , Endotélio Vascular/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Animais , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Feminino , Interleucina-1beta/sangue , Interleucina-1beta/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Masculino , Artérias Mesentéricas/imunologia , Artérias Mesentéricas/metabolismo , Camundongos Endogâmicos ICR , Fosforilação , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Xanthomonas campestris pv. campestris (Xcc) secretes a suite of effectors into host plants via the type III secretion system (T3SS), modulating plant immunity defenses. Strain Xcc8004 causes black rot in brassica plants, including Arabidopsis thaliana, making it a classical model for the study of Xanthomonas pathogenesis. XopLXcc8004 was defined as a T3SS effector (T3SE) since its homologues XopLXcv85-10 from Xanthomonas campestris pv. vesicatoria (Xcv85-10) contribute to virulence in host plants. Except for its virulence on Chinese radish plants, little was previously known about the regulation and function of XopLXcc8004. Here, we tested the role of XopLXcc8004 in the pathogenicity of Xcc8004 on different host plants including Arabidopsis. We found that it was required for full virulence of Xcc8004 in Chinese cabbage. XopLXcc8004 promoted bacterial infection in Arabidopsis and suppressed bacterial flagellin (flg22)-induced FRK1 transcription, reactive oxygen species (ROS) burst, callose deposition, and pathogenesis-related marker gene expression, but it did not affect mitogen-activated protein kinases (MAPKs) cascade. Early and prolonged expression of XopLXcc8004 affected Arabidopsis growth and development. We demonstrated that XopLXcc8004 is a virulence factor and interferes with innate immunity of Arabidopsis by suppressing pathogen-associated molecular pattern-triggered immunity (PTI) signaling, independent of MAPKs.
Assuntos
Arabidopsis/imunologia , Brassica rapa/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Xanthomonas campestris/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Brassica rapa/microbiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Xanthomonas campestris/crescimento & desenvolvimentoRESUMO
This study was designed to examine the in vivo and in vitro effects of captopril, an angiotensin-converting enzyme inhibitor, on nicotine-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to nicotine (0.01, 0.1, or 1 mM) for 24 hr using an organ culture system, or by treating rats with nicotine (2 mg/kg/day, intraperitoneally) for 4 weeks. The protective effects of captopril were tested by exposing isolated mesenteric arteries to captopril (0.01, 0.03, or 0.1 mM) + nicotine (0.1 mM) for 24 hr, or by treating rats with captopril (3 mg/kg/day, intravenously) + nicotine (2 mg/kg/day, intraperitoneally) for 4 weeks. Exposure of the isolated mesenteric arteries to nicotine induced a significant concentration -dependent inhibition of endothelium-dependent relaxation. Co-culture of segments of mesenteric artery with captopril (0.03 or 0.1 mM) attenuated the nicotine-induced impairment of vasorelaxation in a dose-dependent manner. Administration of nicotine to rats for 4 weeks significantly impaired endothelium-dependent relaxation compared with control rats. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), and superoxide dismutase (SOD) activities in the serum and aorta. Chronic captopril treatment not only improved the impairment of endothelium-dependent relaxation, but also prevented the reduction of nitrite/nitrate contents and of NOS and SOD activities in the serum and aorta. However, there were no significant differences in serum angiotensin-converting enzyme activity among the three groups. These results indicate that captopril can be used to attenuate nicotine-induced endothelial dysfunction, an effect that may be related not only to antioxidation, but also to enhancing NO production by preventing the decrease in NOS.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Captopril/farmacologia , Endotélio Vascular/efeitos dos fármacos , Nicotina/toxicidade , Acetilcolina/farmacologia , Animais , Endotélio Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Feminino , Masculino , Norepinefrina , Ratos , Ratos Sprague-DawleyRESUMO
Twenty actinomycetes were isolated from root-knot nematode eggs and females collected from 11 plant root samples infested by Meloidogyne spp.. The isolates were assigned to the genera Streptomyces, Nocardia and Pseudonocardia respectively, based on analysis of morphological characteristics, cell-wall DAPs and 16S rRNA gene sequences. 80% of them were streptomycetes. Biocontrol potential of the isolates against Meloidogyne hapla was evaluated in liquid culture in vitro. The average percentages of egg parasitism, egg hatching, and juvenile mortality were 54.1, 40.4 and 26.2, respectively. Three Streptomyces strains and one Nocardia strain with high pathogenicity in vitro were selected to determine their ability to reduce tomato root galls in greenhouse. The results demonstrated good biocontrol efficacy (31.4%-56.4%) of the strains.
Assuntos
Actinobacteria/patogenicidade , Nematoides/microbiologia , Controle Biológico de Vetores/métodos , Raízes de Plantas/parasitologia , Actinobacteria/classificação , Actinobacteria/genética , Animais , Feminino , Solanum lycopersicum/parasitologia , Nocardia/classificação , Nocardia/genética , Nocardia/patogenicidade , Óvulo/microbiologia , RNA Ribossômico 16S , Streptomyces/classificação , Streptomyces/genética , Streptomyces/patogenicidade , Tylenchoidea/microbiologiaRESUMO
Anisodamine, which is originally extracted from scopolia tangutica and is currently produced in China, is a tropane alkaloid and a muscarinic cholinoceptor blocker. Our previous study found that anisodamine did not alter high K(+)-evoked contraction of rabbit aortic rings using isometric tension recording methods, but could attenuate noradrenaline (NA)-, histamine- or 5-hydroxytryptamine-induced contraction in an endothelium-independent manner. Since the high K(+)-elicited depolarization non-selectively inhibits potassium channels in vascular smooth muscle cell (VSMC) membrane, the vasodilation effect of some potassium channel activators may be inhibited or abolished in high K(+) solution. We hypothesized that some potassium channels in VSMC membrane might play a role in the anisodamine-induced relaxation of blood vessels. The present experiment was designed to investigate whether potassium channel blockers inhibit anisodamine-induced relaxation of the rabbit isolated aortic rings. In a 8-min period, 1, 3 and 10 micromol/L of anisodamine, significantly relaxed the 0.01 micromol/L NA precontracted aortic ring by (19.1+/-3.1)%, (30.1+/-3.8)% and (38.3+/-4.2)%, respectively, compared with the controls [by (4.8+/-2.4)%, (5.1+/-1.8)% and (5.6+/-2.5)%, respectively] (P<0.01). 10 mmol/L of CsCl (a non-selective potassium channel blocker), 1 mmol/L of 4-aminopyridine [a selective voltage-activated potassium channel (K(V)) blocker], 10 mumol/L BaCl2 (a selective inwardly-rectifying potassium channel blocker), 10 micromol/L of glibenclamide (a selective ATP-sensitive potassium channel blocker), 3 micromol/L of charybdotoxin (a large- and intermediate-conductance Ca(2+)-activated potassium channels blocker) and 3 micromol/L of apamin (a selective small conductance Ca(2+)-activated potassium channel blocker) significantly increased the NA-induced contraction by (14.4+/-3.2)%, (16.3+/-5.8)%, (12.7+/-4.2)%, (13.6+/-2.0)%, (11.1+/-5.5)% and (13.4+/-4.3)%, respectively, compared with the control [by (5.6 +/-1.2)%] (P<0.01). In the presence of 10 and 30 mmol/L CsCl or 1 and 3 mmol/L 4-aminopyridine, anisodamine-induced relaxation of the 0.01 micromol/L NA contracted rabbit aortic rings [(28.8+/-3.0)% and (15.9+/-3.7)% or (29.7+/-3.9)% and (19.0+/-5.0)%] significantly deceased, compared with that in the absence of any potassium channel blocker [(38.3+/-4.2)% (P<0.01)] in a 8-min period. However, in the presence of 10, 30 micromol/L of BaCl2, 10, 30 micromol/L of glibenclamide, 3 micromol/L of charybdotoxin, or 3 micromol/L apamin, 10 micromol/L anisodamine-induced relaxation [(37.1+/-3.8)%, (36.2+/-4.7)%, (36.1+/-2.7)%, (35.6+/-3.3)%, (37.8+/-2.0)% and (39.3 +/-4.7) %, respectively] did not decrease, compared with the control [(38.3+/-4.2)%] (P>0.05). This study suggests that K(V) blockers inhibit anisodamine-induced relaxation of the rabbit aortic smooth muscle precontracted with NA and implies that the K(V) in VSMC membrane plays a role in anisodamine-induced relaxation of blood vessels.
Assuntos
Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Alcaloides de Solanáceas/farmacologia , Animais , Aorta/citologia , Feminino , Masculino , Contração Muscular/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , CoelhosRESUMO
156 actinomycetes were isolated from 10 soil samples collected in Tibet by the method of DDC(dispersion and differential centrifugation). The isolates were assigned to 32 different groups on the basis of their morphological characters and colors of substrate mycelium, aerial hyphae and pigment. The result of cell-wall DAP on 65 representative strains selected from these groups was that 9 strains were different from Streptomyces. The analysis of ARDRA and 16S rDNA sequeces showed that the isolates belonged to the genus Streptomyces and five different rare actinomycete genera respectively. Antimicrobial activity of the representative strains was also tested, with the result that 38.5% isolates were positive.
Assuntos
Actinobacteria/isolamento & purificação , Microbiologia do Solo , Actinobacteria/fisiologia , Aminoácidos/análise , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genéticaRESUMO
This study was designed to examine the in vitro effects of adenosine (Ado) on hydrogen peroxide-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to hydrogen peroxide (0.5 mM) for 12 h using an organ culture system. The protective effects of adenosine were tested by exposing isolated mesenteric arteries to adenosine (3 x 10(-7) mol/l, 10(-6) mol/l, 3 x 10(-6) mol/l)+hydrogen peroxide (0.5 mM) for 12 h. This exposure to hydrogen peroxide induced a significant concentration-dependent inhibition of endothelium-dependent relaxation (EDR). Coculture of segments of mesenteric artery with adenosine (3 x 10(-7), 10(-6), and 3 x 10(-6) mol/l) attenuated the hydrogen peroxide-induced impairment of vasorelaxation. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and an increasing in malondislehyde (MDA) and lactate dehydrogenase (LDH) activities in the aorta. These results indicate that adenosine can be used to attenuate hydrogen peroxide-induced endothelial dysfunction, an effect that may be related to antioxidation, thus enhancing NO production by preventing the decrease in NOS.
Assuntos
Adenosina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Endotélio Vascular/fisiologia , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/análise , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: To investigate the general pattern of cholinergic nerve distribution and M(2) receptors in adult rat heart. METHODS: Karnovsky-Roots histochemical staining combining point counting method and immunochemical SABC method with image analysis were used to identify the cholinergic nerves and M(2) receptors, respectively, in adult rat heart. RESULTS: Positive staining of cholinergic nerves and M(2) receptors was found in all regions of the rat heart, and the point count of cholinergic nerves in the atria was 4.6 times as much as that in ventricles, and the area of immunoreactive substance for M(2) receptors two-fold higher in the atria than in the ventricles. The point counts of the cholinergic nerves in the medial-layer myocardium were fewer than that in subepicardial and endocardial tissues of the left ventricular free wall. However, M(2) receptors were comparable among the 3 layers of the left free ventricular wall. CONCLUSION: Cholinergic nerves and M(2) receptors are located in both rat atria and ventricles, but their density is much higher in the atria than in the ventricles. Transmural heterogeneity characterizes cholinergic nerve innervation in the left ventricular free wall without significant differences in M(2) receptor density.