RESUMO
The cuticular wax that covers the surfaces of plants is the first barrier against environmental stresses and increasingly accumulates with light exposure. However, the molecular basis of light-responsive wax biosynthesis remains elusive. In grape (Vitis vinifera), light exposure resulted in higher wax terpenoid content and lower decay and abscission rates than controls kept in darkness. Assay for transposase-accessible chromatin with high-throughput sequencing and RNA-seq data were integrated to draw the chromatin accessibility and cis-elements regulatory map to identify the potential action sites. Terpenoid synthase 12 (VvTPS12) and 3-hydroxy-3-methylglutaryl-CoA reductase 2 (VvHMGR2) were identified as grape wax biosynthesis targets, while VvHYH and VvGATA24 were identified as terpenoid biosynthesis activators, as more abundant wax crystals and higher wax terpenoid content were observed in transiently overexpressed grape berries and Nicotiana benthamiana leaves. The interaction between VvHYH and the open chromatin of VvTPS12 was confirmed qualitatively using a dual luciferase assay and quantitatively using surface plasma resonance, with an equilibrium dissociation constant of 2.81 nm identified via the latter approach. Molecular docking simulation implied the structural nature of this interaction, indicating that 24 amino acid residues of VvHYH, including Arg106A, could bind to the VvTPS12 G-box cis-element. VvGATA24 directly bound to the open chromatin of VvHMGR2, with an equilibrium dissociation constant of 8.59 nm. Twelve amino acid residues of VvGATA24, including Pro218B, interacted with the VvHMGR2 GATA-box cis-element. Our work characterizes the mechanism underlying light-mediated wax terpenoid biosynthesis and provides gene targets for future molecular breeding.
Assuntos
Proteínas de Plantas , Terpenos , Fatores de Transcrição , Vitis , Ceras , Terpenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Vitis/metabolismo , Ceras/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Luz , Simulação de Acoplamento MolecularRESUMO
Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.
Assuntos
Ácido Abscísico , Ácido Ascórbico , Secas , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ácido Ascórbico/biossíntese , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Protein-polysaccharide complexes have been successfully used for emulsion stabilization. However, it is unclear how the complex's surface charge influences aggregation stability and coalescence stability of emulsions, and whether a low charged interfacial film can still maintain the coalescence stability of oil droplets. In the present study, the effects of pH (around the pI of protein) on the aggregation and coalescence stability of emulsions were investigated. RESULTS: Whey protein isolate (WPI) and peach gum polysaccharides (PGP) complexes (WPI-PGP complexes) were synthesized at pH 3, 4 and 5. Their sizes were 598, 274 and 183 nm, respectively, and their ζ-potentials were +2.9, -8.6 and -22.8 mV, respectively. Interface rheological experiments showed that WPI-PGP complex at pH 3 had the lowest interfacial tension, and formed the softest film compared to the complexes at pH 4 and 5. Microfluidic experiments showed that all WPI-PGP complexes were able to stabilize droplets against coalescence within short timescales (milliseconds). At pH 3, no coalescence was observed even under conditions where the continuous phase flow influenced the shape of oil droplets (from spheres to ellipsoids). At pH 4 and 5, the model emulsions were stable over 16 days of storage, extensive aggregation and creaming occurred at pH 3 after 8 days. Importantly, no coalescence took place. CONCLUSION: The present study confirmed that the aggregation stability of the emulsions was mainly determined by the surface charge of the complex, whereas the coalescence stability of emulsions is expectedly determined by steric repulsion, providing new insights into how to prepare stable food emulsions. © 2024 Society of Chemical Industry.
Assuntos
Emulsões , Polissacarídeos , Reologia , Proteínas do Soro do Leite , Concentração de Íons de Hidrogênio , Emulsões/química , Proteínas do Soro do Leite/química , Polissacarídeos/química , Emulsificantes/química , Prunus persica/química , Tamanho da Partícula , Gomas Vegetais/químicaRESUMO
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Assuntos
Melatonina , Melatonina/farmacologia , Peróxido de Hidrogênio , Antioxidantes , Produtos Agrícolas , Reguladores de Crescimento de Plantas/farmacologiaRESUMO
Anthocyanins have received considerable attention for the development of food products with attractive colors and potential health benefits. However, anthocyanin applications have been hindered by stability issues, especially in the context of complex food matrices and diverse processing methods. From the natural microenvironment of plants to complex processed food matrices and formulations, there may happen comprehensive changes to anthocyanins, leading to unpredictable stability behavior under various processing conditions. In particular, anthocyanin hydration, degradation, and oxidation during thermal operations in the presence of oxygen represent major challenges. First, this review aims to summarize our current understanding of key anthocyanin stability issues focusing on the chemical properties and their consequences in complex food systems. The subsequent efforts to examine plenty of cases attempt to unravel a universal pattern and provide thorough guidance for future food practice regarding anthocyanins. Additionally, we put forward a model with highlights on the role of the balance between anthocyanin release and degradation in stability evaluations. Our goal is to engender updated insights into anthocyanin stability behavior under food processing conditions and provide a robust foundation for the development of anthocyanin stabilization strategies, expecting to promote more and deeper progress in this field.
Assuntos
Antocianinas , Manipulação de Alimentos , Antocianinas/análise , OxirreduçãoRESUMO
Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.
RESUMO
BACKGROUND: Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS: Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS: Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Assuntos
Ácido Abscísico/metabolismo , Actinidia/crescimento & desenvolvimento , Actinidia/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Actinidia/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genéticaRESUMO
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Assuntos
COVID-19 , Nanoestruturas , Ácidos Nucleicos , Humanos , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2RESUMO
MAIN CONCLUSION: Exogenous ABA played a positive role in the accumulation and biosynthesis of aroma components of postharvest kiwifruit after low-temperature storage, especially the esters production during ripening. Low-temperature storage (LTS) generally affects the aroma formation associated with the decrease in aroma quality in kiwifruit. In this work, abscisic acid (ABA) treatment after LTS increased the production of aroma components in postharvest kiwifruit and enhanced the related enzyme activity, especially alcohol acyltransferase (AAT), branched amino acid transaminase (BCAT) and hydroperoxide lyase (HPL). Corresponding to the enzyme activity, the gene expression of AchnAAT, AchnADH, AchnBCAT and AchnHPL was significantly up-regulated by ABA. The principal component analysis further illustrated the differences in aroma components between ABA and the control. The positive correlation of aroma accumulation with the expression levels of AchnPDC and AchnLOX and the enzyme activities of BCAT and pyruvate decarboxylase (PDC) was also revealed by correlation analysis. In addition, the promoter sequences of the key genes involved in aroma biosynthesis contained multiple cis-elements (ABRE and G-box) of ABA-responsive proteins. Combining the transcriptome sequencing data, the promoting role of ABA signaling in the regulation of aroma biosynthesis of postharvest kiwifruit after LTS was discussed. This study would provide a reference for improving aroma quality of postharvest kiwifruit after LTS, as well the molecular mechanism of kiwifruit aroma fading after LTS.
Assuntos
Ácido Abscísico , Actinidia , Ácido Abscísico/metabolismo , Actinidia/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Odorantes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , TemperaturaRESUMO
Phenolic compounds are minor metabolites usually present in mushroom species. Because of their potential advantages for human health, such as antioxidant and other biological activities, these bioactive components have been gaining more interest as functional foods, nutraceutical agents for providing better health conditions. This review aims to comprehensively discuss the recent advances in mushroom phenolic compounds, including new sources, structural characteristics, biological activities, potential uses and its industrial applications as well as the future perspectives. Phenolic acids as well as flavonoids are considered the most common phenolics occurring in mushroom species. These are responsible for its bioactivities, including antioxidant, anti-inflammatory, antitumor, antihyperglycaemic, antiosteoporotic, anti-tyrosinase and antimicrobial activities. Several edible mushroom species with good phenolic content and show higher biological activity were highlighted, in a way for its futuristic applications. Trends on mushroom research highlighting new research areas, such as nanoformulation were discussed. Furthermore, the use of phenolic compounds as nutraceutical and cosmeceutical agents as well as the future perspectives and recommendations were made.
Assuntos
Agaricales , Agaricales/química , Anti-Inflamatórios/química , Antioxidantes/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Fenóis/metabolismo , Fenóis/farmacologiaRESUMO
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Assuntos
Frutas , Verduras , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Frutas/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologiaRESUMO
Programmable engineered DNA origami provides infinite possibilities for customizing nanostructures with controllable precision and configurable functionality. Here, a strategy for fabricating an amphiphilic triangular DNA origami with a central nanopore that integrates phase-stabilizing, porous-gated, and affinity-delivering effects is presented. By introducing the DNA origami as a single-component surfactant, the water-in-oil-in-water (W/O/W) emulsion is effectively stabilized with decreased interfacial tension. Microscopic observation validates the attachment of the DNA origami onto the water-in-oil and oil-in-water interfaces. Furthermore, fluorescence studies and molecular docking simulations indicate the binding interactions of DNA origami with arbutin and coumaric acid at docking sites within central nanopores. These central nanopores are functionalized as molecular gates and affinity-based scaffold for the zero-order release of arbutin and coumaric acid at a constant rate regardless of concentration gradient throughout the whole releasing period. In vivo zebrafish results illustrate the advantages of this zero-order release for anti-melanogenesis therapy over direct exposure or Fickian diffusion. The DNA origami-based W/O/W emulsion presents anti-melanogenic effects against UV-B exposure without cardiotoxicity or motor toxicity. These results demonstrate that this non-toxic amphiphilic triangular DNA origami is capable of solely stabilizing the W/O/W emulsion as well as serving as nanopore gates and affinity-based scaffold for constant release.
Assuntos
Nanoporos , Nanoestruturas , Animais , DNA , Emulsões , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Peixe-ZebraRESUMO
Investigation into plant-fungal pathogen interactions is one of the most interesting fields in plant sciences. However, the roles of plant volatile organic compounds in the arms race are still largely unknown. Based on precise quantification of plant volatiles, we discovered that the plant volatile organic compound (E)-2-hexenal, at concentrations that were similar to or lower than those in tissues of strawberry and tomato fruits, upregulates sulfate assimilation in spores and hyphae of the phytopathogenic fungus Botrytis cinerea. This upregulation is independent of the types of sulfur sources in the plant and can be achieved in the presence of inorganic sulfate and organic sulfur sources. Using the fungal deletion mutants, we further found that sulfate assimilation is involved in the infection of tomato and strawberry fruits by B. cinerea, and that the severity of the disease is proportional to the sulfate content in the fruits. Both before and during the infection, (E)-2-hexenal induced utilisation of plant sulfate by B. cinerea facilitates its pathogenesis through enhancing its tolerance to oxidative stress. This work provides novel insights into the role of plant volatiles in plant-fungal pathogen interaction and highlights the importance of sulfur levels in the host in the prevention of grey mould disease.
Assuntos
Botrytis , Compostos Orgânicos Voláteis , Aldeídos , Frutas , Doenças das Plantas , SulfatosRESUMO
BACKGROUND: Boscalid is often used to extend the storage time of postharvest cherry tomato. Pesticide residue has become an issue of food safety. This study sought to investigate the spatial distribution of boscalid residue in cherry tomato fruits and to determine the effect of 24-epibrassinolide (EBR) in promoting boscalid degradation. RESULTS: Boscalid could quickly penetrate into cherry tomatoes, but mainly remained in the peel. The migration of boscalid from the peel into the core was a time-consuming and complex process during storage. After 72 h, boscalid residues in the pulp and the core began to accumulate gradually. The exogenous application of EBR activated peroxidase, glutathione reductase and glutathione S-transferase, and effectively promoted the degradation of boscalid by a maximum decrease of 44.8% in peel, 54.0% in pulp and 71.2% in core. CONCLUSION: As one of the common pesticides, boscalid had a strong ability to enter the cherry tomato and thus become a potential risk for public consumption. Therefore, rational use of pesticides is recommended. The results of this study indicate that the possible risk of boscalid residue could be alleviated by EBR pretreatment through activating detoxification enzymes. © 2020 Society of Chemical Industry.
Assuntos
Compostos de Bifenilo/metabolismo , Brassinosteroides/farmacologia , Fungicidas Industriais/metabolismo , Niacinamida/análogos & derivados , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Esteroides Heterocíclicos/farmacologia , Compostos de Bifenilo/química , Ativação Enzimática/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/metabolismo , Fungicidas Industriais/química , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Peroxidase/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismoRESUMO
Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) have been extensively explored in the design of accurate, transparent, and conclusive food safety and quality control assays. Its hyphenation with chemometric algorithms is instrumental in securing safe food campaigns. To provide valuable recommendations and meet the growing demands for food screening, the current study begins with a brief description of the Raman spectroscopy and SERS theory followed by a comprehensive overview of spectral preprocessing, qualitative algorithms, variable selection methods, and quantitative algorithms. The review emphasizes on the importance of food monitoring practices using multivariate regression models. The applicability of the distinct chemometrics modes toward monitoring pesticide, food and illicit additives, heavy metals, pathogens, and its metabolites in Raman spectroscopy and SERS is covered in dairy, poultry, oil, honey, beverages, and other selected food matrices. Its pertinence toward classification and/or discrimination in food quality and safety monitoring and authentication is examined. Finally, it also complies with the limitations, key challenges, and prospects. The chemometrics processing spectra implemented with simpler or no complicated sample pretreatment step make Raman spectroscopy/SERS technique a potential approach that is expected to achieve simultaneous and fast detection of multiple analytes in food matrices.
Assuntos
Praguicidas , Análise Espectral Raman , Algoritmos , Qualidade dos Alimentos , Inocuidade dos AlimentosRESUMO
Button mushrooms (Agaricus bisporus) were put under stimulated storage and transportation environments with different amounts of phase-change materials (PCM). Results showed that the addition of PCM effectively maintained a cooler environment and delayed a rise in temperature. And the addition of PCM, especially in a ratio 1:2 PCM:mushroom, had a significant effect on delaying the increase in cell membrane permeability, malondialdehyde and H2O2 levels, and also delayed superoxide dismutase and catalase activity. These results suggest that PCM may be candidate in postharvest mushroom during storage and transportation.
RESUMO
The purpose of this study is to explore the effect of 10% carbon dioxide (CO2) on the fruit quality and sugar metabolism of fresh-cut pear during storage. The results indicated that carbon dioxide treatment maintained fruit quality by delaying the decline of firmness and promoting the accumulation of total soluble solids (TSS). Moreover, carbon dioxide enhanced activities of sucrose synthase (SS), and sucrose phosphate synthase (SPS). The activities of amylase, acid invertase (AI), neutral invertase (NI), SS-cleavage, fructokinase (FK), hexokinase (HK), sorbitol oxidase (SOX), NAD-dependent sorbitol dehydrogenase (NAD-SDH), and NADP-SDH in CO2-treated fruit were inhibited. Expression levels of key genes were found to correspond with the related enzyme activities. As a result, the accumulation of glucose, fructose, sorbitol, and sucrose were accelerated by CO2, which were 12.58%, 13.86%, 24.7%, and 13.9% higher than those of the control at the end of storage, respectively. The results showed that CO2 could maintain the quality of fresh-cut pears by regulating the conversion of various sugar components to enhance soluble sugars content.
Assuntos
Metabolismo dos Carboidratos , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Frutas/química , Pyrus/química , Carboidratos/química , Ativação Enzimática , Enzimas/metabolismo , Qualidade dos Alimentos , Frutas/metabolismo , Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , SolubilidadeRESUMO
Abscisic acid (ABA) is a phytohormone which is involved in the regulation of tomato ripening. In this research, the effects of exogenous ABA on the bioactive components and antioxidant capacity of the tomato during postharvest ripening were evaluated. Mature green cherry tomatoes were infiltrated with either ABA (1.0 mM) or deionized water (control) and stored in the dark for 15 days at 20 °C with 90% relative humidity. Fruit colour, firmness, total phenolic and flavonoid contents, phenolic compounds, lycopene, ascorbic acid, enzymatic activities, and antioxidant capacity, as well as the expression of major genes related to phenolic compounds, were periodically monitored. The results revealed that exogenous ABA accelerated the accumulations of total phenolic and flavonoid contents; mostly increased the contents of detected phenolic compounds; enhanced FRAP and DPPH activity; and promoted the activities of PAL, POD, PPO, CAT, and APX during tomato ripening. Meanwhile, the expressions of the major genes (PAL1, C4H, 4CL2, CHS2, F3H, and FLS) involved in the phenylpropanoid pathway were up-regulated (1.13- to 26.95-fold) in the tomato during the first seven days after treatment. These findings indicated that ABA promoted the accumulation of bioactive components and the antioxidant capacity via the regulation of gene expression during tomato ripening.
Assuntos
Ácido Abscísico/farmacologia , Antioxidantes/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Ácido Ascórbico/análise , Cor , Flavonoides/análise , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Licopeno/análise , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Fenóis/análiseRESUMO
BACKGROUND: Pistachio fruits suffer from postharvest decay, caused by Aspergillus flavus. This results in aflatoxin B1 (AFB1 ) accumulation in kernels, which is hazardous for human health due to its carcinogenic activity. In this study, the mechanism used by exogenous ß-aminobutyric acid (BABA) treatment for attenuating Aspergillus decay, minimizing aflatoxin B1 (AFB1 ) accumulation, and maintaining nutritional quality in fresh-in-hull pistachio kernels, infected by A. flavus during storage at 25 °C for 18 days, was investigated. RESULT: Results of an in vivo assay showed that the spore germination and germ tube elongation of A. flavus was repressed by BABA treatment at 7.5 mM. Aspergillus decay accompanied by AFB1 accumulation was also minimized in fresh-in-hull pistachio kernels treated with BABA at 7.5 mM and infected by A. flavus. Fresh-in-hull pistachio kernels, infected by A. flavus, treated with BABA at 7.5 mM, also exhibited higher phenol and flavonoid accumulation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity accompanied by higher phenylalanine ammonia lyase (PAL) enzyme activity. CONCLUSION: Promoting phenylpropanoid pathway activity with higher PAL enzyme activity in fresh-in-hull pistachio kernels treated with BABA may not only reduce Aspergillus decay in kernels by cell wall fortification but also may be favorable for maintaining the kernels' nutritional quality through its effects on ROS scavenging capacity. As oxidative stress, represented by ROS accumulation, is responsible for A. flavus growth and AFB1 accumulation, higher phenol and flavonoid accumulation in fresh-in-hull pistachio kernels treated with BABA may be beneficial for attenuating Aspergillus decay and minimizing AFB1 accumulation. © 2019 Society of Chemical Industry.
Assuntos
Aflatoxina B1/análise , Aminobutiratos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Pistacia/efeitos dos fármacos , Pistacia/microbiologia , Aspergillus flavus/metabolismo , Análise de Alimentos , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Frutas/química , Frutas/efeitos dos fármacos , Frutas/microbiologia , Germinação/efeitos dos fármacos , Valor Nutritivo , Pistacia/químicaRESUMO
Foodborne pathogen contamination has become a severe threat to human health. Traditional methods for foodborne pathogen detection have several disadvantages, including long detection time, low sensitivity, and low selectivity. The emergence of multiple excellent nanomaterials enables the construction of novel biosensors for foodborne pathogen detection. Based on the outstanding properties of nanomaterials, the novel biosensors possess the advantages of sensitivity, specificity, rapidity, accuracy, and simplicity. The present review comprehensively summarizes the advanced biosensors, including electrochemical, colorimetric, fluorescent, and surface enhanced Raman scattering biosensors for sensing key foodborne pathogens in recent decades. Furthermore, several issues are identified for further exploration, and possible directions for the development of biosensors are discussed.