Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674043

RESUMO

Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.


Assuntos
Biodegradação Ambiental , Cianetos , Genoma Bacteriano , Filogenia , Pseudomonas , Cianetos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Genômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Pseudomonas pseudoalcaligenes/genética
2.
EMBO Rep ; 22(11): e53720, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672066

RESUMO

Synthetic biology could harness the ability of microorganisms to use highly toxic cyanide compounds for growth applied to bioremediation of cyanide-contaminated mining wastes and areas.


Assuntos
Cianetos , Biologia Sintética , Biodegradação Ambiental , Cianetos/toxicidade
3.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108394

RESUMO

Wastewater from mining and other industries usually contains arsenic and cyanide, two highly toxic pollutants, thereby creating the need to develop bioremediation strategies. Here, molecular mechanisms triggered by the simultaneous presence of cyanide and arsenite were analyzed by quantitative proteomics, complemented with qRT-PCR analysis and determination of analytes in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes CECT 5344. Several proteins encoded by two ars gene clusters and other Ars-related proteins were up-regulated by arsenite, even during cyanide assimilation. Although some proteins encoded by the cio gene cluster responsible for cyanide-insensitive respiration decreased in the presence of arsenite, the nitrilase NitC required for cyanide assimilation was unaffected, thus allowing bacterial growth with cyanide and arsenic. Two complementary As-resistance mechanisms were developed in this bacterium, the extrusion of As(III) and its extracellular sequestration in biofilm, whose synthesis increased in the presence of arsenite, and the formation of organoarsenicals such as arseno-phosphoglycerate and methyl-As. Tetrahydrofolate metabolism was also stimulated by arsenite. In addition, the ArsH2 protein increased in the presence of arsenite or cyanide, suggesting its role in the protection from oxidative stress caused by both toxics. These results could be useful for the development of bioremediation strategies for industrial wastes co-contaminated with cyanide and arsenic.


Assuntos
Arsênio , Arsenitos , Pseudomonas pseudoalcaligenes , Pseudomonas pseudoalcaligenes/genética , Pseudomonas pseudoalcaligenes/metabolismo , Proteômica , Arsênio/metabolismo , Cianetos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo
4.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012437

RESUMO

Denitrification consists of the sequential reduction of nitrate to nitrite, nitric oxide, nitrous oxide, and dinitrogen. Nitrous oxide escapes to the atmosphere, depending on copper availability and other environmental factors. Iron is also a key element because many proteins involved in denitrification contain iron-sulfur or heme centers. The NtrYX two-component regulatory system mediates the responses in a variety of metabolic processes, including denitrification. A quantitative proteomic analysis of a Paracoccus denitrificans NtrY mutant grown under denitrifying conditions revealed the induction of different TonB-dependent siderophore transporters and proteins related to iron homeostasis. This mutant showed lower intracellular iron content than the wild-type strain, and a reduced growth under denitrifying conditions in iron-limited media. Under iron-rich conditions, it releases higher concentrations of siderophores and displayes lower nitrous oxide reductase (NosZ) activity than the wild-type, thus leading to nitrous oxide emission. Bioinformatic and qRT-PCR analyses revealed that NtrYX is a global transcriptional regulatory system that responds to iron starvation and, in turn, controls expression of the iron-responsive regulators fur, rirA, and iscR, the denitrification regulators fnrP and narR, the nitric oxide-responsive regulator nnrS, and a wide set of genes, including the cd1-nitrite reductase NirS, nitrate/nitrite transporters and energy electron transport proteins.


Assuntos
Paracoccus denitrificans , Desnitrificação , Homeostase , Ferro/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteômica
5.
Mol Microbiol ; 111(6): 1592-1603, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875449

RESUMO

Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.


Assuntos
Proteínas de Bactérias/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimologia , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Molibdênio/metabolismo , Nitrato Redutase/genética , Oxirredução , Paracoccus denitrificans/genética
6.
Mol Microbiol ; 103(1): 117-133, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696579

RESUMO

Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitrite, to the periplasm. Our complementation studies, using a mutant lacking the nitrate/proton symporter NasA from the assimilatory nitrate reductase pathway, support that NarK1 functions as a nitrate/proton symporter while NarK2 is a nitrate/nitrite antiporter. Through the same experimental system, we find that Escherichia coli NarK and NarU can complement deletions in both narK and nasA in P. denitrificans, suggesting that, while these proteins are most likely nitrate/nitrite antiporters, they can also act in the net uptake of nitrate. Finally, we argue that primary sequence analysis and structural modelling do not readily explain why NasA, NarK1 and NarK2, as well as other transporters from this protein family, have such different functions, ranging from net nitrate uptake to nitrate/nitrite exchange.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Teste de Complementação Genética , Transporte de Íons , Nitrato Redutase/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitritos/metabolismo
7.
Appl Microbiol Biotechnol ; 102(3): 1067-1074, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29209795

RESUMO

Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds, like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds. This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential application in bioremediation of industrial cyanide-containing wastes.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cianetos/metabolismo , Microbiologia Industrial , Anaerobiose , Reatores Biológicos , Resíduos Industriais/análise , Nitrilas/metabolismo , Nitrogenase/metabolismo , Tiocianatos/metabolismo , Eliminação de Resíduos Líquidos/métodos
8.
Biochem J ; 474(11): 1769-1787, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28385879

RESUMO

Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Nitratos/metabolismo , Ciclo do Nitrogênio , Paracoccus denitrificans/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase (NADH)/antagonistas & inibidores , Nitrato Redutase (NADH)/química , Nitrato Redutase (NADH)/genética , Nitrato Redutase (NADH)/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/crescimento & desenvolvimento , Proteômica/métodos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
9.
J Biol Chem ; 288(41): 29692-702, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24005668

RESUMO

Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Ânions/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Cinética , Família Multigênica , Mutação , Nitrito Redutase (NAD(P)H)/química , Nitrito Redutase (NAD(P)H)/genética , Nitrito Redutase (NAD(P)H)/metabolismo , Nitritos/metabolismo , Nitrogênio/química , Oxigênio/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Transdução de Sinais/genética , Espectrometria de Fluorescência
10.
Environ Microbiol ; 15(1): 253-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22998548

RESUMO

Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.


Assuntos
Cianetos/metabolismo , Genoma Bacteriano/genética , Pseudomonas pseudoalcaligenes/genética , Aerobiose/genética , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/genética , Composição de Bases/genética , Ordem dos Genes , Tamanho do Genoma/genética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Filogenia , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas pseudoalcaligenes/classificação , Pseudomonas pseudoalcaligenes/enzimologia , Pseudomonas pseudoalcaligenes/metabolismo , Sintenia/genética
11.
Biochem J ; 435(3): 743-53, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21348864

RESUMO

The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.


Assuntos
Nitratos/metabolismo , Nitritos/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoplasma , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica , NAD/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredução , Paracoccus denitrificans/genética , Plasmídeos/genética
12.
Microbiology (Reading) ; 157(Pt 3): 739-746, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21178163

RESUMO

The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.


Assuntos
Biodegradação Ambiental , Cianetos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Oxirredutases/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Proteínas de Bactérias/metabolismo , Meios de Cultura , Cianetos/farmacologia , Malatos/metabolismo , Nitrilas/metabolismo , Ácido Oxaloacético/metabolismo , Oxirredução , Consumo de Oxigênio , Pseudomonas pseudoalcaligenes/enzimologia , Pseudomonas pseudoalcaligenes/crescimento & desenvolvimento , Compostos de Amônio Quaternário/metabolismo
13.
Biochem Soc Trans ; 39(1): 269-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265786

RESUMO

There are thousands of areas in the U.S.A. and Europe contaminated with cyanide-containing wastes as a consequence of a large number of industrial activities such as gold mining, steel and aluminium manufacturing, electroplating and nitrile pesticides used in agriculture. Chemical treatments to remove cyanide are expensive and generate other toxic products. By contrast, cyanide biodegradation constitutes an appropriate alternative treatment. In the present review we provide an overview of how cells deal in the presence of the poison cyanide that irreversible binds to metals causing, among other things, iron-deprivation conditions outside the cell and metalloenzymes inhibition inside the cell. In this sense, several systems must be present in a cyanotrophic organism, including a siderophore-based acquisition mechanism, a cyanide-insensitive respiratory system and a cyanide degradation/assimilation pathway. The alkaliphilic autochthonous bacterium Pseudomonas pseudocaligenes CECT5344 presents all these requirements with the production of siderophores, a cyanide-insensitive bd-related cytochrome [Cio (cyanide-insensitive oxidase)] and a cyanide assimilation pathway that generates ammonium, which is further incorporated into organic nitrogen.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cianetos/metabolismo , Oxirredutases/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Respiração Celular/fisiologia , Cianetos/toxicidade , Família Multigênica , Nitrogênio/metabolismo , Sideróforos/metabolismo
14.
Biochem Soc Trans ; 39(6): 1838-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103536

RESUMO

In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Nitratos/metabolismo , Família Multigênica/genética , Nitrogênio/metabolismo
15.
Microbiol Spectr ; 9(3): e0077721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730416

RESUMO

3-Cyanoalanine and cyanohydrins are intermediate nitriles produced in cyanide degradation pathways in plants and bacteria. 3-Cyanoalanine is generated from cyanide by the 3-cyanoalanine synthase, an enzyme mainly characterized in cyanogenic plants. NIT4-type nitrilases use 3-cyanoalanine as a substrate, forming ammonium and aspartate. In some organisms, this enzyme also generates asparagine through an additional nitrile hydratase activity. The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 assimilates cyanide through an intermediate cyanohydrin, which is further converted into ammonium by the nitrilase NitC. This bacterium also contains three additional nitrilases, including Nit4. In this work, a proteomic analysis of P. pseudoalcaligenes CECT5344 cells grown with 3-cyanoalanine as the sole nitrogen source has revealed the overproduction of different proteins involved in nitrogen metabolism, including the nitrilase NitC. In contrast, the nitrilase Nit4 was not induced by 3-cyanoalanine, and it was only overproduced in cells grown with a cyanide-containing jewelry-manufacturing residue. Phenotypes of single and double mutant strains defective in nit4 or/and nitC revealed the implication of the nitrilase NitC in the assimilation of 3-cyanoalanine and suggest that the 3-cyanoalanine assimilation pathway in P. pseudoalcaligenes CECT5344 depends on the presence or absence of cyanide. When cyanide is present, 3-cyanoalanine is assimilated via Nit4, but in the absence of cyanide, a novel pathway for 3-cyanoalanine assimilation, in which the nitrilase NitC uses the nitrile generated after deamination of the α-amino group from 3-cyanoalanine, is proposed. IMPORTANCE Nitriles are organic cyanides with important industrial applications, but they are also found in nature. 3-Cyanoalanine is synthesized by plants and some bacteria to detoxify cyanide from endogenous or exogenous sources, but this nitrile may be also involved in other processes such as stress tolerance, nitrogen and sulfur metabolism, and signaling. The cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344 grows with 3-cyanoalanine as the sole nitrogen source, but it does not use this nitrile as an intermediate in the cyanide assimilation pathway. In this work, a quantitative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to study, for the first time, the response to 3-cyanoalanine at the proteomic level. Proteomic data, together with phenotypes of different nitrilase-defective mutants of P. pseudoalcaligenes CECT5344, provide evidence that in the absence of cyanide, the nitrilase Nit4 is not involved in 3-cyanoalanine assimilation, and instead, the nitrilase NitC participates in a novel alternative 3-cyanoalanine assimilation pathway.


Assuntos
Alanina/análogos & derivados , Aminoidrolases/metabolismo , Nitrilas/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Alanina/metabolismo , Transporte Biológico/fisiologia , Cromatografia Líquida , Cianetos/metabolismo , Hidroliases/metabolismo , Pseudomonas pseudoalcaligenes/genética , Espectrometria de Massas em Tandem
16.
Sci Rep ; 11(1): 17276, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446760

RESUMO

Denitrification is a respiratory process by which nitrate is reduced to dinitrogen. Incomplete denitrification results in the emission of the greenhouse gas nitrous oxide and this is potentiated in acidic soils, which display reduced denitrification rates and high N2O/N2 ratios compared to alkaline soils. In this work, impact of pH on the proteome of the soil denitrifying bacterium Paracoccus denitrificans PD1222 was analysed with nitrate as sole energy and nitrogen source under anaerobic conditions at pH ranging from 6.5 to 7.5. Quantitative proteomic analysis revealed that the highest difference in protein representation was observed when the proteome at pH 6.5 was compared to the reference proteome at pH 7.2. However, this difference in the extracellular pH was not enough to produce modification of intracellular pH, which was maintained at 6.5 ± 0.1. The biosynthetic pathways of several cofactors relevant for denitrification and nitrogen assimilation like cobalamin, riboflavin, molybdopterin and nicotinamide were negatively affected at pH 6.5. In addition, peptide representation of reductases involved in nitrate assimilation and denitrification were reduced at pH 6.5. Data highlight the strong negative impact of pH on NosZ synthesis and intracellular copper content, thus impairing active NosZ assembly and, in turn, leading to elevated nitrous oxide emissions.


Assuntos
Proteínas de Bactérias/metabolismo , Paracoccus denitrificans/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Microbiologia do Solo , Proteínas de Bactérias/genética , Desnitrificação , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Paracoccus denitrificans/genética , Proteoma/genética , Solo/química
17.
Appl Environ Microbiol ; 74(20): 6280-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18708510

RESUMO

Cyanase catalyzes the decomposition of cyanate into CO(2) and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel sigma(54)-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5 degrees C and a temperature of 65 degrees C. An insertion mutation was generated in the cynS gene. The resulting mutant was unable to use cyanate as the sole nitrogen source but showed the same resistance to cyanate as the wild-type strain. These results, in conjunction with the induction pattern of the enzymatic activity, suggest that the enzyme has an assimilatory function. Although the induction of cyanase activity in cyanide-degrading cells suggests that some cyanate may be generated from cyanide, the cynS mutant was not affected in its ability to degrade cyanide, which unambiguously indicates that cyanate is not a central metabolite in cyanide assimilation.


Assuntos
Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Cianetos/metabolismo , Pseudomonas pseudoalcaligenes/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Liases/isolamento & purificação , Clonagem Molecular , Cianatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Família Multigênica , Mutagênese Insercional , Pseudomonas pseudoalcaligenes/genética , Pseudomonas pseudoalcaligenes/metabolismo , Compostos de Amônio Quaternário/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Temperatura , Fatores de Transcrição/genética
18.
FEMS Microbiol Lett ; 365(6)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438505

RESUMO

Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.


Assuntos
Biodegradação Ambiental , Cianetos/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Biotecnologia , Microbiologia Ambiental , Genômica/métodos , Oxirredução , Proteômica/métodos , Pseudomonas pseudoalcaligenes/genética
19.
Front Microbiol ; 9: 1137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896187

RESUMO

Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated.

20.
FEMS Microbiol Lett ; 365(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228177

RESUMO

Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source.


Assuntos
Hidroxibutiratos/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/metabolismo , Poliésteres/metabolismo , Acetilcoenzima A/química , Proteínas de Bactérias/genética , Citoplasma/química , Mutação , Nitrogênio/metabolismo , Paracoccus denitrificans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA