Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709320

RESUMO

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Árvores , Conservação dos Recursos Naturais/métodos , Humanos , Filogenia , Árvores/classificação
2.
New Phytol ; 233(1): 546-554, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610149

RESUMO

Some plant traits may be legacies of coevolution with extinct megafauna. One example is the convergent evolution of 'divaricate' cage architectures in many New Zealand lineages, interpreted as a response to recently extinct flightless avian browsers whose ancestors arrived during the Paleogene period. Although experiments have confirmed that divaricate habit deters extant browsers, its abundance on frosty, droughty sites appears consistent with an earlier interpretation as a response to cold, dry Plio-Pleistocene climates. We used 45 protein-coding sequences from plastid genomes to reconstruct the evolutionary history of the divaricate habit in extant New Zealand lineages. Our dated phylogeny of 215 species included 91% of New Zealand eudicot divaricate species. We show that 86% of extant divaricate plants diverged from non-divaricate sisters within the last 5 Ma, implicating Plio-Pleistocene climates in the proliferation of cage architectures in New Zealand. Our results, combined with other recent findings, are consistent with the synthetic hypothesis that the browser-deterrent effect of cage architectures was strongly selected only when Plio-Pleistocene climatic constraints prevented woody plants from growing quickly out of reach of browsers. This is consistent with the abundance of cage architectures in other regions where plant growth is restricted by aridity or short frost-free periods.


Assuntos
Aves , Plantas , Animais , Nova Zelândia , Filogenia
3.
New Phytol ; 223(3): 1319-1327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30985943

RESUMO

Leaf size varies conspicuously along environmental gradients. Small leaves help plants cope with drought and frost, because of the effect of leaf size on boundary layer conductance; it is less clear what advantage large leaves confer in benign environments. We asked if large leaves give species of warm climates an advantage in seedling light interception efficiency over small-leaved species from colder environments. We measured seedling leaf, architectural and biomass distribution traits of 18 New Zealand temperate rainforest evergreens; we then used a 3-D digitiser and the Yplant program to model leaf area display and light interception. Species associated with mild climates on average had larger leaves and larger specific leaf areas (SLA) than those from cold climates, and displayed larger effective foliage areas per unit of aboveground biomass, indicating higher light interception efficiency at whole-plant level. This reflected differences in total foliage area, rather than in self-shading. Our findings advance the understanding of leaf size by showing that large leaves enable seedlings of species with highly conductive (but frost-sensitive) xylem to deploy large foliage areas without increasing self-shading. Leaf size variation along temperature gradients in humid forests may therefore reflect a trade-off between seedling light interception efficiency and susceptibility to frost.


Assuntos
Meio Ambiente , Umidade , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Plântula/efeitos da radiação , Análise de Variância , Biomassa , Modelos Biológicos , Filogenia , Característica Quantitativa Herdável , Especificidade da Espécie , Temperatura , Árvores/fisiologia
4.
New Phytol ; 219(2): 565-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29766502

RESUMO

Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages.


Assuntos
Florestas , Congelamento , Internacionalidade , Folhas de Planta/fisiologia , Clima , Modelos Teóricos , Especificidade da Espécie
5.
Oecologia ; 187(3): 609-623, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29637296

RESUMO

Recent work suggests that plant size affects light requirements and carbon balance of juvenile trees, and such shifts may be greater in light-demanding species than in their more shade-tolerant associates. To explore the physiological basis of such shifts, we measured juvenile light interception, carbon gain and growth of four subtropical Australian rainforest trees differing in shade tolerance, comparing individuals ranging from 13 to 238 cm in height, across a wide range of understory environments. We hypothesized that even in a standardized light environment, increasing sapling size would lead to declines in net daily carbon gain of foliage and relative growth rates (RGR) of all species, with declines more pronounced in light-demanding species. Crown architecture of individuals was recorded using a 3-dimensional digitizer, and the YPLANT program was used to estimate the self-shaded fraction of each crown and model net carbon gain. Increased sapling size caused a significant increase in self-shading, and significant declines in net daily carbon gain and RGR of light-demanding species, while such ontogenetic variations were minimal or absent in shade-tolerant species. Additionally, differences in the slope of the relationship between light and RGR led to crossovers in RGR among shade-tolerant and light-demanding species at low light. Our results show that the magnitude of ontogenetic variation in net daily carbon gain and RGR can be substantial and may depend on successional status, making it unsafe to assume that young seedling performance can be used to predict or model responses of larger juvenile trees.


Assuntos
Carbono , Floresta Úmida , Austrália , Fotossíntese , Folhas de Planta , Árvores
6.
New Phytol ; 213(2): 657-668, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27588893

RESUMO

Forest ecologists researching the functional basis of tree regeneration patterns and species coexistence often attempt to correlate traits with light-gradient partitioning. However, an exclusive focus on light can overlook other important drivers of forest dynamics. We measured light, temperatures, humidity and sapling densities in each of four phases of a forest dynamic mosaic in New Zealand: shaded understoreys, tree-fall gaps, treefern groves and clearings. We then measured leaf, wood and seed traits, as potential predictors of species' regeneration patterns. Saplings of 18 out of 21 species were significantly associated with one or other of the four phases, and associations were best predicted by a two-trait model (leaf size, wood density) explaining 51% of observed variation. Species associated with treefall gaps had traits favouring light pre-emption (large leaves, low-density wood), whereas those establishing in clearings mostly had small leaves and dense wood, traits probably conferring resistance to the frosts and summer water deficits that saplings were exposed to there. The dynamics of some forests cannot be explained adequately by light-gradient partitioning through a growth vs shade tolerance tradeoff, underpinned by the leaf economics spectrum. Consideration of multiple environmental filters and multiple traits will enhance understanding of regeneration patterns and species coexistence.


Assuntos
Meio Ambiente , Florestas , Regeneração , Árvores/fisiologia , Análise de Variância , Lagos , Microclima , Nova Zelândia , Tamanho do Órgão , Folhas de Planta/anatomia & histologia , Característica Quantitativa Herdável , Especificidade da Espécie
7.
New Phytol ; 206(2): 614-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581061

RESUMO

Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Aclimatação , Respiração Celular , Clima , Modelos Teóricos , Fenótipo , Fotossíntese , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Temperatura
8.
Oecologia ; 179(4): 1011-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318296

RESUMO

Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.


Assuntos
Acer/crescimento & desenvolvimento , Carbono/metabolismo , Luz , Fotossíntese/fisiologia , Acer/metabolismo , Biomassa , Carbono/análise , Florestas , Minnesota , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento
9.
Am J Bot ; 101(2): 338-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509795

RESUMO

PREMISE OF THE STUDY: Relationships of leaf size and shape (physiognomy) with climate have been well characterized for woody non-monocotyledonous angiosperms (dicots), allowing the development of models for estimating paleoclimate from fossil leaves. More recently, petiole width of seed plants has been shown to scale closely with leaf mass. By measuring petiole width and leaf area in fossils, leaf mass per area (MA) can be estimated and an approximate leaf life span inferred. However, little is known about these relationships in ferns, a clade with a deep fossil record and with the potential to greatly expand the applicability of these proxies. METHODS: We measured the petiole width, MA, and leaf physiognomic characters of 179 fern species from 188 locations across six continents. We applied biomechanical models and assessed the relationship between leaf physiognomy and climate using correlational approaches. KEY RESULTS: The scaling relationship between area-normalized petiole width and MA differs between fern fronds and pinnae. The scaling relationship is best modeled as an end-loaded cantilevered beam, which is different from the best-fit biomechanical model for seed plants. Fern leaf physiognomy is not influenced by climatic conditions. CONCLUSIONS: The cantilever beam model can be applied to fossil ferns. The lack of sensitivity of leaf physiognomy to climate in ferns argues against their use to reconstruct paleoclimate. Differences in climate sensitivity and biomechanical relationships between ferns and seed plants may be driven by differences in their hydraulic conductivity and/or their differing evolutionary histories of vein architecture and leaf morphology.


Assuntos
Evolução Biológica , Clima , Gleiquênias/anatomia & histologia , Magnoliopsida/anatomia & histologia , Folhas de Planta/anatomia & histologia , Fenômenos Biomecânicos , Fósseis , Sementes
10.
Am J Bot ; 101(12): 2121-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480709

RESUMO

UNLABELLED: • PREMISE OF STUDY: Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• METHODS: We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• KEY RESULTS: Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• CONCLUSIONS: Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Plantas/genética , Floresta Úmida , Clima Tropical , Regiões Antárticas , Australásia , Filogeografia
11.
Ann Bot ; 111(3): 479-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23264237

RESUMO

BACKGROUND AND AIMS: A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. METHODS: Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. RESULTS: Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. CONCLUSIONS: The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.


Assuntos
Luz , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Austrália , Biomassa , Dióxido de Carbono/metabolismo , Temperatura Baixa , Estudos Transversais , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Chuva , Estações do Ano , Plântula/efeitos da radiação , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/efeitos da radiação , Clima Tropical , Xilema/anatomia & histologia , Xilema/crescimento & desenvolvimento
12.
Nat Commun ; 14(1): 3948, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402725

RESUMO

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.


Assuntos
Ecossistema , Plantas , Mudança Climática , Folhas de Planta , Fenótipo
13.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018407

RESUMO

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Assuntos
Magnoliopsida , Humanos , Filogenia , Mudança Climática , Biodiversidade
14.
Ann Bot ; 110(1): 177-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585929

RESUMO

BACKGROUND AND AIMS: The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. METHODS: This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. RESULTS: Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. CONCLUSIONS: The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.


Assuntos
Magnoliopsida/anatomia & histologia , Folhas de Planta/anatomia & histologia , Plântula/anatomia & histologia , Traqueófitas/anatomia & histologia , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Plântula/fisiologia , Traqueófitas/fisiologia
15.
PeerJ ; 10: e13450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586134

RESUMO

Background: Several smartphone applications have been developed for the purpose of low-cost and convenient assessments of vegetation canopy structure and understorey illumination. Like standard hemispherical photography, most of these applications require user decisions about image processing, posing challenges for repeatability of measurements. Here I report a test of CanopyCapture, an application that instantaneously estimates percentage canopy gap fraction without any input from the user, and has the added advantage of an intuitive levelling mechanism. Methods: Gap fraction estimates by CanopyCapture were compared with gap fraction values computed by the LAI-2200C Canopy Analyzer, in two contrasting evergreen temperate forests in New Zealand: an even-aged southern beech (Nothofagus) stand and an old-growth podocarp/broadleaf forest. These comparisons were repeated using a wide-angle adapter to enhance the smartphone camera's field of view from 45 to 65°. I also asked if CanopyCapture results depended on sky condition (sunny vs. overcast) and on the type of smartphone used. Results: CanopyCapture output was significantly correlated with gap fraction computed by the LAI-2200C (R2 = 0.39), and use of the wide-angle adapter lifted this value to 0.56. However, CanopyCapture output was not significantly correlated with LAI-2200C output in the even-aged Nothofagus stand, where there was less spatial variation in canopy structure. Despite being much less sensitive to variation in gap fraction than the LAI-2200C, CanopyCapture was nevertheless able to detect differences in average gap fraction between the two forests studied. CanopyCapture results beneath intact canopies were not significantly affected by sky condition, but reflection of direct light off tree trunks in sunny weather caused slight overestimation of gap fraction beneath broken canopies and gaps. Uneven or patchy cloud cover can also cause erroneous readings beneath large canopy openings. Three different models of smartphone gave different results. Conclusions: CanopyCapture offers a rapid and repeatable proxy for comparisons of average canopy gap fraction in multiple stands/forests, provided large sample sizes are used. Measurement under even overcast skies is recommended, and studies involving multiple operators will need to standardize smartphones to ensure comparability of results. Although wide-angle adapters can improve performance, CanopyCapture's low sensitivity prevents high-resolution comparisons of the light environments of individual understorey plants within a stand.


Assuntos
Florestas , Smartphone , Luz Solar , Iluminação , Fotografação
16.
Nat Commun ; 13(1): 3185, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676261

RESUMO

Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and function remain unclear. Here, by considering 18 functional traits, encompassing leaf, seed, bark, wood, crown, and root characteristics, we quantify the multidimensional relationships in tree trait expression. We find that nearly half of trait variation is captured by two axes: one reflecting leaf economics, the other reflecting tree size and competition for light. Yet these orthogonal axes reveal strong environmental convergence, exhibiting correlated responses to temperature, moisture, and elevation. By subsequently exploring multidimensional trait relationships, we show that the full dimensionality of trait space is captured by eight distinct clusters, each reflecting a unique aspect of tree form and function. Collectively, this work identifies a core set of traits needed to quantify global patterns in functional biodiversity, and it contributes to our fundamental understanding of the functioning of forests worldwide.


Assuntos
Árvores , Biodiversidade , Florestas , Casca de Planta/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Sementes/fisiologia , Árvores/fisiologia , Madeira/fisiologia
17.
New Phytol ; 190(3): 724-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21294735

RESUMO

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.


Assuntos
Clima , Internacionalidade , Paleontologia , Folhas de Planta/anatomia & histologia , Calibragem , Fósseis , Geografia , Modelos Biológicos , Tamanho do Órgão , Filogenia , Chuva , Análise de Regressão , Especificidade da Espécie , Temperatura
18.
Ann Bot ; 108(3): 419-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21856637

RESUMO

BACKGROUND AND AIMS: A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing shade tolerance were measured, and how these variables are influenced by ontogeny was queried. METHODS: The biomass distribution of juveniles (17-740 mm tall) of seven temperate rainforest evergreens growing in low (approx. 4 %) light in the understorey of a second-growth stand was quantified. Daytime and night-time gas exchange rates of leaves were also determined, and crown architecture was recorded digitally. YPLANT was used to model light interception and carbon gain. RESULTS: An index of species shade tolerance correlated closely with photosynthetic capacities and respiration rates per unit mass of leaves, but only weakly with respiration per unit area. Accumulation of many leaf cohorts by shade-tolerant species meant that their ratios of foliage area to biomass (LAR) decreased more gradually with ontogeny than those of light-demanders, but also increased self-shading; this depressed the foliage silhouette-to-area ratio (STAR), which was used as an index of light-interception efficiency. As a result, displayed leaf area ratio (LAR(d) = LAR × STAR) of large seedlings was not related to species shade tolerance. Self-shading also caused simulated net daily carbon assimilation rates of shade-tolerant species to decrease with ontogeny, leading to a negative correlation of shade tolerance with net daily carbon gain of large (500 mm tall) seedlings in the understorey. CONCLUSIONS: The results suggest that efficiency of energy capture is not an important correlate of shade tolerance in temperate rainforest evergreens. Ontogenetic increases in self-shading largely nullify the potential carbon gain advantages expected to result from low respiration rates and long leaf lifespans in shade-tolerant evergreens. The main advantage of their long-lived leaves is probably in reducing the costs of crown maintenance.


Assuntos
Biomassa , Carbono/metabolismo , Escuridão , Fagaceae/metabolismo , Árvores/metabolismo , Respiração Celular , Chile , Fotossíntese , Folhas de Planta/fisiologia , Plântula/metabolismo , Árvores/crescimento & desenvolvimento , Clima Tropical
19.
New Phytol ; 186(2): 429-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20202128

RESUMO

*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.


Assuntos
Biomassa , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Análise de Variância , Austrália , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos da radiação , Monóxido de Carbono/farmacologia , Meio Ambiente , Folhas de Planta/efeitos dos fármacos , Chuva , Especificidade da Espécie , Árvores/efeitos dos fármacos , Árvores/efeitos da radiação , Clima Tropical
20.
Front Plant Sci ; 11: 507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508852

RESUMO

The abundance of the divaricate growth form in New Zealand has been interpreted as either (a) the response of an isolated flora to cool, dry, Plio-Pleistocene climates; or (b) a defense against large browsing birds (moa) that were hunted to extinction shortly after human arrival during the last millennium. We used patterns of divaricate plant abundance across present-day landscapes to test a novel synthetic hypothesis: that the divaricate form is of most value to plants on fertile soils that attract herbivores, on sites where climatic constraints prevent plants from quickly growing out of the browse zone. This hypothesis predicts that divaricate species should be most abundant on terraces (landforms that are both fertile and frost-prone) in regions that are cold and dry, and should be scarce across all topographic positions in the warmest (largely frost-free) regions. To address our hypothesis, we first tested the influence of topography on frost regimes and nutrient levels by measuring temperatures and soil total C, N, and P at four standard topographic positions at five localities differing widely in macroclimate. We then extracted a dataset of 236 surveys comprising 9,877 relevé plots from the New Zealand National Vegetation Survey databank. We calculated the proportion of arborescent species with a divaricate growth form and the proportion of total arborescentcover contributed by divaricates on each plot; we then fitted linear mixed-effect models predicting these response variables as functions of topographic position and climate. The number of frosts recorded averaged <1 yr-1 at the warmest of the five sites studied, to >60 yr-1 on all topographic positions at the coldest site. Terraces were subject to more frequent and harder frosts than any other topographic position. Topography had no significant influence on total N or C:N, but total P was higher on terraces and in gullies than on faces or ridges. Frost-free period was the dominant influence on both species representation and cover of divaricate plants throughout the country. The effect of topography was also significant, but weaker. The effect of frost-free period was stronger on sites with water deficits than on sites where precipitation exceeded evapotranspiration. Divaricates made their largest contributions on terraces in cold, dry regions; as predicted, they were scarce on all topographic positions on sites with frost-free periods >300 days. Our hypothesis was generally supported, although the effect of topography on divaricate abundance was not as strong as some previous studies led us to expect. Divaricates made their largest contributions to arborescent species richness and cover on sites where climatic restrictions on growth coincide with relatively high nutrient availability. The contemporary distribution of the divaricate form across New Zealand landscapes thus appears to be reasonably well explained by the hypothesized interaction of climate and fertility-mediated browsing, although experiments may provide more conclusive tests of this hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA