Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38934115

RESUMO

BACKGROUND: Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-ß (transforming growth factor-ß) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-ß activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-ß and to prevent it from activating its receptor. METHODS: We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS: In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-ß signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-ß antibody or additional SMC-specific loss of the TGF-ß receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS: In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-ß signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.

2.
Acta Pharmacol Sin ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719954

RESUMO

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

3.
Eur Radiol ; 33(11): 7952-7966, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37314471

RESUMO

OBJECTIVES: To evaluate whether MRI-based T stage (TMRI), [18F]FDG PET/CT-based N (NPET/CT), and M stage (MPET/CT) are superior in NPC patients' prognostic stratification based on long-term survival evidences, and whether TNM staging method involving TMRI + NPET/CT + MPET/CT could improve NPC patients' prognostic stratification. METHODS: From April 2007 to December 2013, 1013 consecutive untreated NPC patients with complete imaging data were enrolled. All patients' initial stages were repeated based on (1) the NCCN guideline recommended "TMRI + NMRI + MPET/CT" ("MMP") staging method; (2) the traditional "TMRI + NMRI + Mconventional work-up (CWU)" ("MMC") staging method; (3) the single-step "TPET/CT + NPET/CT + MPET/CT" ("PPP") staging method; or (4) the "TMRI + NPET/CT + MPET/CT" ("MPP") staging method recommended in present research. Survival curve, ROC curve, and net reclassification improvement (NRI) analysis were used to evaluate the prognosis predicting ability of different staging methods. RESULTS: [18F]FDG PET/CT performed worse on T stage (NRI = - 0.174, p < 0.001) but better on N (NRI = 0.135, p = 0.004) and M stage (NRI = 0.126, p = 0.001). The patients whose N stage upgraded by [18F]FDG PET/CT had worse survival (p = 0.011). The "TMRI + NPET/CT + MPET/CT" ("MPP") method performed better on survival prediction when compared with "MMP" (NRI = 0.079, p = 0.007), "MMC" (NRI = 0.190, p < 0.001), or "PPP" method (NRI = 0.107, p < 0.001). The "TMRI + NPET/CT + MPET/CT" ("MPP") method could reclassify patients' TNM stage to a more appropriate stage. The improvement is significant in patients with more than 2.5-years follow-up according to the time-dependent NRI values. CONCLUSIONS: The MRI is superior to [18F]FDG PET/CT in T stage, and [18F]FDG PET/CT is superior to CWU in N/M stage. The "TMRI + NPET/CT + MPET/CT" ("MPP") staging method could significantly improve NPC patients' long-term prognostic stratification. CLINICAL RELEVANCE STATEMENT: The present research provided long-term follow-up evidence for benefits of MRI and [18F]FDG PET/CT in TNM staging for nasopharyngeal carcinoma, and proposes a new imaging procedure for TNM staging incorporating MRI-based T stage and [18F]FDG PET/CT-based N and M stage, which significantly improves long-term prognostic stratification for patients with NPC. KEY POINTS: • The long-term follow-up evidence of a large-scale cohort was provided to evaluate the advantages of MRI, [18F]FDG PET/CT, and CWU in the TNM staging of nasopharyngeal carcinoma. • A new imaging procedure for TNM stage of nasopharyngeal carcinoma was proposed.


Assuntos
Neoplasias Nasofaríngeas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/patologia , Prognóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Estadiamento de Neoplasias , Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas/patologia
4.
Acta Pharmacol Sin ; 43(10): 2596-2608, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35241769

RESUMO

Platelet hyperactivity is essential for thrombus formation in coronary artery diseases (CAD). Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients with cystic fibrosis elevates intracellular Cl- levels ([Cl-]i) and enhanced platelet hyperactivity. In this study, we explored whether alteration of [Cl-]i has a pathological role in regulating platelet hyperactivity and arterial thrombosis formation. CFTR expression was significantly decreased, while [Cl-]i was increased in platelets from CAD patients. In a FeCl3-induced mouse mesenteric arteriole thrombosis model, platelet-specific Cftr-knockout and/or pre-administration of ion channel inhibitor CFTRinh-172 increased platelet [Cl-]i, which accelerated thrombus formation, enhanced platelet aggregation and ATP release, and increased P2Y12 and PAR4 expression in platelets. Conversely, Cftr-overexpressing platelets resulted in subnormal [Cl-]i, thereby decreasing thrombosis formation. Our results showed that clamping [Cl-]i at high levels or Cftr deficiency-induced [Cl-]i increasement dramatically augmented phosphorylation (Ser422) of serum and glucocorticoid-regulated kinase (SGK1), subsequently upregulated P2Y12 and PAR4 expression via NF-κB signaling. Constitutively active mutant S422D SGK1 markedly increased P2Y12 and PAR4 expression. The specific SGK1 inhibitor GSK-650394 decreased platelet aggregation in wildtype and platelet-specific Cftr knockout mice, and platelet SGK1 phosphorylation was observed in line with increased [Cl-]i and decreased CFTR expression in CAD patients. Co-transfection of S422D SGK1 and adenovirus-induced CFTR overexpression in MEG-01 cells restored platelet activation signaling cascade. Our results suggest that [Cl-]i is a novel positive regulator of platelet activation and arterial thrombus formation via the activation of a [Cl-]i-sensitive SGK1 signaling pathway. Therefore, [Cl-]i in platelets is a novel potential biomarker for platelet hyperactivity, and CFTR may be a potential therapeutic target for platelet activation in CAD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Proteínas Imediatamente Precoces , Trombose , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Trombose/metabolismo
5.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
6.
Eur J Nucl Med Mol Imaging ; 48(8): 2586-2598, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33420610

RESUMO

PURPOSE: This study aimed to establish an effective nomogram to predict primary distant metastasis (DM) in patients with nasopharyngeal carcinoma (NPC) to guide the application of PET/CT. METHODS: In total, 3591 patients with pathologically confirmed NPC were consecutively enrolled. The nomogram was constructed based on 1922 patients treated between 2007 and 2014. Multivariate logistical regression was applied to identify the independent risk factors of DM. The predictive value of the nomogram was evaluated using the concordance index (C-index), calibration curve, probability density functions (PDFs), and clinical utility curve (CUC). The results were validated in 1669 patients enrolled from 2015 to 2016. Net reclassification improvement (NRI) was applied to compare performances of the nomogram with other clinical factors. The best cut-off value of the nomogram chosen for clinical application was analyzed. RESULTS: A total of 355 patients showed primary DM among 3591 patients, yielding an incidence rate of 9.9%. Sex, N stage, EBV DNA level, lactate dehydrogenase level, and hemoglobin level were independent predictive factors for primary DM. C-indices in the training and validation cohort were 0.796 (95% CI, 0.76-0.83) and 0.779 (95% CI, 0.74-0.81), respectively. The NRI indices demonstrated that this model had better predictive performance than plasma EBV DNA level and N stage. We advocate for a threshold probability of 3.5% for guiding the application of PET/CT depending on the clinical utility analyses. CONCLUSION: This nomogram is a useful tool to predict primary DM of NPC and guide the clinical application of PET/CT individually at the initial staging.


Assuntos
Neoplasias Nasofaríngeas , Nomogramas , Fluordesoxiglucose F18 , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico
7.
Eur Radiol ; 31(7): 5222-5233, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33416977

RESUMO

OBJECTIVES: The value of using PET/CT for staging of stage I-II NPC remains unclear. Hence, we aimed to investigate the survival benefit of PET/CT for staging of early-stage NPC before radical therapy. METHODS: A total of 1003 patients with pathologically confirmed NPC of stages I-II were consecutively enrolled. Among them, 218 patients underwent both PET/CT and conventional workup ([CWU], head-and-neck MRI, chest radiograph, liver ultrasound, bone scintigraphy) before treatment. The remaining 785 patients only underwent CWU. The standard of truth (SOT) for lymph node metastasis was defined by the change of size according to follow-up MRI. The diagnostic efficacies were compared in 218 patients who underwent both PET/CT and CWU. After covariate adjustment using propensity scoring, a cohort of 872 patients (218 with and 654 without pre-treatment PET/CT) was included. The primary outcome was overall survival based on intention to treat. RESULTS: Retropharyngeal lymph nodes were metastatic based on follow-up MRI in 79 cases. PET/CT was significantly less sensitive than MRI in detecting retropharyngeal lymph node lesions (72.2% [62.3-82.1] vs. 91.1% [84.8-97.4], p = 0.004). Neck lymph nodes were metastatic in 89 cases and PET/CT was more sensitive than MRI (96.6% [92.8-100.0] vs. 76.4% [67.6-85.2], p < 0.001). In the survival analyses, there was no association between pre-treatment PET/CT use and improved overall survival, progression-free survival, local relapse-free survival, regional relapse-free survival, and distant metastasis-free survival. CONCLUSIONS: This study showed PET/CT is of little value for staging of stage I-II NPC patients at initial imaging. KEY POINTS: • PET/CT was more sensitive than MRI in detecting neck lymph node lesions whereas it was significantly less sensitive than MRI in detecting retropharyngeal lymph node lesions. • No association existed between pre-treatment PET/CT use and improved survival in stage I-II NPC patients.


Assuntos
Neoplasias Nasofaríngeas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Casos e Controles , Fluordesoxiglucose F18 , Humanos , Linfonodos/patologia , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/patologia , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
8.
Acta Pharmacol Sin ; 42(4): 560-572, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32694758

RESUMO

Chloride (Cl-) homeostasis is of great significance in cardiovascular system. Serum Cl- level is inversely associated with the mortality of patients with heart failure. Considering the importance of angiogenesis in the progress of heart failure, this study aims to investigate whether and how reduced intracellular Cl- concentration ([Cl-]i) affects angiogenesis. Human umbilical endothelial cells (HUVECs) were treated with normal Cl- medium or low Cl- medium. We showed that reduction of [Cl-]i (from 33.2 to 16.18 mM) inhibited HUVEC proliferation, migration, cytoskeleton reorganization, tube formation, and subsequently suppressed angiogenesis under basal condition, and VEGF stimulation or hypoxia treatment. Moreover, VEGF-induced NADPH-mediated reactive oxygen species (ROS) generation and VEGFR2 axis activation were markedly attenuated in low Cl- medium. We revealed that lowering [Cl-]i inhibited the expression of the membrane-bound catalytic subunits of NADPH, i.e., p22phox and Nox2, and blunted the translocation of cytosolic regulatory subunits p47phox and p67phox, thereby restricting NADPH oxidase complex formation and activation. Furthermore, reduced [Cl-]i enhanced ROS-associated protein tyrosine phosphatase 1B (PTP1B) activity and increased the interaction of VEGFR2 and PTP1B. Pharmacological inhibition of PTP1B reversed the effect of lowering [Cl-]i on VEGFR2 phosphorylation and angiogenesis. In mouse hind limb ischemia model, blockade of Cl- efflux using Cl- channel inhibitors DIDS or DCPIB (10 mg/kg, i.m., every other day for 2 weeks) significantly enhanced blood flow recovery and new capillaries formation. In conclusion, decrease of [Cl-]i suppresses angiogenesis via inhibiting oxidase stress-mediated VEGFR2 signaling activation by preventing NADPH oxidase complex formation and promoting VEGFR2/PTP1B association, suggesting that modulation of [Cl-]i may be a novel therapeutic avenue for the treatment of angiogenic dysfunction-associated diseases.


Assuntos
Cloretos/metabolismo , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Citoesqueleto de Actina/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Acta Pharmacol Sin ; 41(2): 208-217, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31484993

RESUMO

TMEM16A Ca2+-activated chloride channel (CaCC) plays an essential role in vascular homeostasis. In this study we investigated the molecular mechanisms underlying downregulation of TMEM16A CaCC activity during hypertension. In cultured basilar artery smooth muscle cells (BASMCs) isolated from 2k2c renohypertesive rats, treatment with angiotensin II (0.125-1 µM) dose-dependently increased endophilin A2 levels and decreased TMEM16A expression. Similar phenomenon was observed in basilar artery isolated from 2k2c rats. We then used whole-cell recording to examine whether endophilin A2 could regulate TMEM16A CaCC activity in BASMCs and found that knockdown of endophilin A2 significantly enhanced CaCC activity, whereas overexpression of endophilin A2 produced the opposite effect. Overexpression of endophilin A2 did not affect the TMEM16A mRNA level, but markedly decreased TMEM16A protein level in BASMCs by inducing ubiquitination and autophagy of TMEM16A. Ubiquitin-binding receptor p62 (SQSTM1) could bind to ubiquitinated TMEM16A and resulted in a process of TMEM16A proteolysis in autophagosome/lysosome. These data provide new insights into the regulation of TMEM16A CaCC activity by endophilin A2 in BASMCs, which partly explains the mechanism of angiotensin-II-induced TMEM16A inhibition during hypertension-induced vascular remodeling.


Assuntos
Aciltransferases/metabolismo , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Aciltransferases/genética , Angiotensina II/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Regulação para Baixo , Técnicas de Silenciamento de Genes , Hipertensão/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/fisiologia
10.
Acta Pharmacol Sin ; 41(8): 1073-1084, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32139897

RESUMO

Serum- and glucocorticoid-inducible kinease-1 (SGK1) is a serine/threonine kinase regulated by hypotonic stimuli, which is involved in regulation of cell cycle and apoptosis. Our previous study shows that activation of volume-regulated Cl- channels (VRCCs) protects rat basilar artery smooth muscle cells (BASMCs) against hydrogen peroxide (H2O2)-induced apoptosis. In the present study, we investigated whether SGK1 was involved in the protective effect of VRCCs in BASMCs. We showed that hypotonic challenge significantly reduced H2O2-induced apoptosis, and increased SGK1 phosphorylation, but did not affect SGK1 protein expression. The protective effect of hypotonic challenge against H2O2-induced apoptosis was mediated through inhibiting mitochondria-dependent apoptotic pathway, evidenced by increased Bcl-2/Bax ratio, stabilizing mitochondrial membrane potential (MMP), decreased cytochrome c release from the mitochondria to the cytoplasm, and inhibition of the activation of caspase-9 and caspase-3. These protective effects of hypotonic challenge against H2O2-induced apoptosis was diminished and enhanced, respectively, by SGK1 knockdown and overexpression. We further revealed that SGK1 activation significantly increased forkhead box O3a (FOXO3a) phosphorylation, and then inhibited the translocation of FOXO3a into nucleus and the subsequent expression of Bcl-2 interacting mediator of cell death (Bim). In conclusion, SGK1 mediates the protective effect of VRCCs against H2O2-induced apoptosis in BASMCs via inhibiting FOXO3a/Bim signaling pathway. Our results provide compelling evidences that SGK1 is a critical link between VRCCs and apoptosis, and shed a new light on the treatment of vascular apoptosis-associated diseases, such as vascular remodeling, angiogenesis, and atherosclerosis.


Assuntos
Apoptose/efeitos dos fármacos , Canais de Cloreto/fisiologia , Peróxido de Hidrogênio/farmacologia , Proteínas Imediatamente Precoces/fisiologia , Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Artéria Basilar/citologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Regulação para Baixo , Proteína Forkhead Box O3/metabolismo , Masculino , Miócitos de Músculo Liso , Ratos Sprague-Dawley
11.
J Mol Cell Cardiol ; 134: 131-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301303

RESUMO

Cerebrovascular remodeling is the leading factor for stroke and characterized by increased extracellular matrix deposition, migration and proliferation of vascular smooth muscle cells, and inhibition of their apoptosis. TMEM16A is an important component of Ca2+-activated Cl- channels. Previously, we showed that downregulation of TMEM16A in the basilar artery was negatively correlated with cerebrovascular remodeling during hypertension. However, it is unclear whether TMEM16A participates in angiotensin II (Ang II)-induced vascular remodeling in mice that have TMEM16A gene modification. In this study, we generated a transgenic mouse that overexpresses TMEM16A specifically in vascular smooth muscle cells. We observed that vascular remodeling in the basilar artery during Ang II-induced hypertension was significantly suppressed upon vascular smooth muscle-specific overexpression of TMEM16A relative to control mice. Specifically, we observed a large reduction in the deposition of fibronectin and collagen I. The expression of matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were upregulated in the basilar artery during Ang II-induced hypertension, but this was suppressed upon overexpression of TMEM16A in blood vessels. Furthermore, TMEM16A overexpression alleviated the overactivity of the canonical TGF-ß1/Smad3, and non-canonical TGF-ß1/ERK and JNK pathways in the basilar artery during Ang II-induced hypertension. These in vivo results were similar to the results derived in vitro with basilar artery smooth muscle cells stimulated by Ang II. Moreover, we observed that the inhibitory effect of TMEM16A on MMPs was mediated by decreasing the activation of WNK1, which is a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrates that TMEM16A protects against cerebrovascular remodeling during hypertension by suppressing extracellular matrix deposition. We also showed that TMEM16A exerts this effect by reducing the expression of MMPs via inhibiting WNK1, and decreasing the subsequent activities of TGF-ß1/Smad3, ERK, and JNK. Accordingly, our results suggest that TMEM16A may serve as a novel therapeutic target for vascular remodeling.


Assuntos
Angiotensina II/farmacologia , Anoctamina-1/genética , Circulação Cerebrovascular , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Anoctamina-1/metabolismo , Anoctamina-1/fisiologia , Células Cultivadas , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/genética , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Expressão Gênica/fisiologia , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
12.
Hum Brain Mapp ; 39(1): 407-427, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058342

RESUMO

Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Carcinoma/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Lesões por Radiação/diagnóstico por imagem , Adulto , Idoso , Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Carcinoma/diagnóstico por imagem , Carcinoma/fisiopatologia , Estudos Transversais , Imagem de Tensor de Difusão , Relação Dose-Resposta à Radiação , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Imagem Multimodal , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/fisiopatologia , Prognóstico , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Dosagem Radioterapêutica , Descanso , Estudos Retrospectivos , Adulto Jovem
13.
Biochem Biophys Res Commun ; 495(2): 1864-1870, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225169

RESUMO

Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.


Assuntos
Aortite/imunologia , Calcineurina/imunologia , Cálcio/imunologia , Moléculas de Adesão Celular/imunologia , Endotélio Vascular/imunologia , Fatores de Transcrição NFATC/imunologia , Proteína ORAI1/imunologia , Animais , Aortite/patologia , Células Cultivadas , Regulação para Baixo/imunologia , Humanos , Mediadores da Inflamação/imunologia , Redes e Vias Metabólicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Circ J ; 82(3): 903-913, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29081444

RESUMO

BACKGROUND: TMEM16A is a critical component of Ca2+-activated chloride channels (CaCCs) and mediates basilar arterial smooth muscle cell (BASMC) proliferation in hypertensive cerebrovascular remodeling. CaMKII is a negative regulator of CaCC, and four CaMKII isoforms (α, ß, γ and δ) are expressed in vasculature; however, it is unknown which and how CaMKII isoforms affect TMEM16A-associated CaCC and BASMC proliferation.Methods and Results:Patch clamp and small interfering RNA (siRNA) knockdown of different CaMKII isoforms revealed that only CaMKIIγ inhibited native Ca2+-activated chloride currents (ICl.Ca) in BASMCs. The TMEM16A overexpression evoked TMEM16A Cl-current and inhibited angiotensin II (Ang II)-induced proliferation in BASMCs. The co-immunoprecipitation and pull-down assay indicated an interaction between CaMKIIγ and TMEM16A protein. TMEM16A Cl-current was modulated by CaMKIIγ phosphorylation at serine residues in TMEM16A. Serine525 and Serine727 in TMEM16A were mutated to alanine, and only mutation at Ser727 (S727A) reversed the CaMKIIγ inhibition of the TMEM16A Cl-current. Phosphomimetic mutation S727D markedly decreased TMEM16A Cl-current and reversed TMEM16A-mediated suppression of BASMC proliferation, mimicking the inhibitory effects of CaMKIIγ on TMEM16A. A significant increase in CaMKIIγ isoform content was observed in parallel to the decrease of TMEM16A and ICl.Cain basilar artery proliferative remodeling in Ang II-infused mice. CONCLUSIONS: Serine 727 phosphorylation in TMEM16A by CaMKIIγ provides a new mechanism for regulating TMEM16A CaCC activity and Ang II-induced BASMC proliferation.


Assuntos
Anoctamina-1/metabolismo , Canais de Cloreto/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Angiotensina II/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células/efeitos dos fármacos , Hipertensão , Camundongos , Fosforilação , Isoformas de Proteínas , RNA Interferente Pequeno
15.
Acta Pharmacol Sin ; 39(5): 875-884, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29595193

RESUMO

Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. (No 2508). We previously showed that Xyl-B promoted endothelial NO release and protected against atherosclerosis through the Akt/eNOS pathway. Vascular NO production regulates vasoconstriction in central and peripheral arteries and plays an important role in blood pressure control. In this study, we examined whether Xyl-B exerted an antihypertensive effect in a hypertensive rat model, and further explored the possible mechanisms underlying its antihypertensive action. Administration of Xyl-B (20 mg·kg-1·d-1, ip, for 12 weeks) significantly decreased the systolic and diastolic blood pressure in a two-kidney, two-clip (2K2C) renovascular hypertensive rats. In endothelium-intact and endothelium-denuded thoracic aortic rings, pretreatment with Xyl-B (20 µmol/L) significantly suppressed phenylephrine (Phe)-induced contractions, suggesting that its vasorelaxant effect was attributed to both endothelial-dependent and endothelial-independent mechanisms. We used SNP, methylene blue (MB, guanylate cyclase inhibitor) and indomethacin (IMC, cyclooxygenase inhibitor) to examine which endothelial pathway was involved, and found that MB, but not IMC, reversed the inhibitory effects of Xyl-B on Phe-induced vasocontraction. Moreover, Xyl-B increased the endothelial NO bioactivity and smooth muscle cGMP level, revealing that the NO-sGC-cGMP pathway, rather than PGI2, mediated the anti-hypertensive effect of Xyl-B. We further showed that Xyl-B significantly attenuated KCl-induced Ca2+ entry in smooth muscle cells in vitro, which was supposed to be mediated by voltage-dependent Ca2+ channels (VDCCs), and reduced ryanodine-induced aortic contractions, which may be associated with store-operated Ca2+ entry (SOCE). Taken together, these findings demonstrate that Xyl-B exerts significant antihypertensive effects not only through the endothelial NO-sGC-cGMP pathway but also through smooth muscle calcium signaling, including VDCCs and SOCE.


Assuntos
Anti-Hipertensivos/uso terapêutico , Sinalização do Cálcio/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Piranos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Cálcio/metabolismo , GMP Cíclico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Azul de Metileno/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores/uso terapêutico
16.
J Cell Mol Med ; 21(5): 904-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27878958

RESUMO

Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Fluoruracila/farmacologia , Neoplasias Hepáticas/metabolismo , Proteína ORAI1/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
J Magn Reson Imaging ; 45(1): 177-186, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341655

RESUMO

PURPOSE: To identify codeine-containing cough syrups (CCS)-related modulations of intrinsic connectivity network (ICN) and to investigate whether these changes of ICN can be related to duration of CCS use and to impulsivity behavior in CCS-dependent individuals. MATERIALS AND METHODS: Resting-state functional magnetic resonance imaging (fMRI) data in 41 CCS-dependent individuals and 34 healthy controls (HC) were scanned at 1.5T and analyzed using independent component analysis (ICA), in combination with a "dual-regression" technique to identify the group differences of three important resting-state networks, the default mode network (DMN), the executive control network (ECN), and the salience network (SN) between the CCS-dependent individuals and HC. RESULTS: Compared with the HC, CCS-dependent individuals had aberrant intrinsic connectivity within the DMN, ECN, and SN (P < 0.05, AlphaSim corrected). Furthermore, a longer duration of CCS use was associated with greater abnormalities in the intrinsic network functional connectivity (FC, P < 0.05, Bonferroni correction). Intrinsic network FC also correlated with higher impulsivity in CCS-dependent individuals (P < 0.05, AlphaSim corrected). CONCLUSION: Our findings revealed aberrant DMN, ECN, and SN connectivity patterns in CCS-dependent patients, which may provide new insight into how neuronal communication and information integration are disrupted among DMN, ECN, and SN key structures due to long duration of CCS use. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:177-186.


Assuntos
Antitussígenos/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Codeína/efeitos adversos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Humanos , Masculino , Rede Nervosa/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Reprodutibilidade dos Testes , Descanso , Sensibilidade e Especificidade , Adulto Jovem
18.
Eur Radiol ; 27(3): 1161-1168, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27329520

RESUMO

OBJECTIVES: To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults. METHODS: We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use. RESULTS: We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults. CONCLUSIONS: These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology. KEY POINTS: • CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum • Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex • Impairment of VMHC correlated with impulsive behaviour in patients • Impairment of VMHC correlated with the CCS duration in patients.


Assuntos
Codeína , Corpo Caloso/diagnóstico por imagem , Transtornos Relacionados ao Uso de Opioides/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Adolescente , Adulto , Antitussígenos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos de Casos e Controles , China , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Tamanho do Órgão , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Adulto Jovem
19.
Arterioscler Thromb Vasc Biol ; 36(4): 618-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26916730

RESUMO

OBJECTIVE: To determine the role of orai1 store-operated Ca(2+) entry in foam cell formation and atherogenesis. APPROACH AND RESULTS: Acute administration of oxidized low-density lipoprotein (oxLDL) activates an orai1-dependent Ca(2+) entry in macrophages. Chelation of intracellular Ca(2+), inhibition of orai1 store-operated Ca(2+) entry, or knockdown of orai1 dramatically inhibited oxLDL-induced upregulation of scavenger receptor A, uptake of modified LDL, and foam cell formation. Orai1-dependent Ca(2+) entry induces scavenger receptor A expression and foam cell formation through activation of calcineurin but not calmodulin kinase II. Activation of nuclear factor of activated T cells is not involved in calcineurin signaling to foam cell formation. However, oxLDL dephosohorylates and activates apoptosis signal-regulating kinase 1 in macrophages. Orai1 knockdown prevents oxLDL-induced apoptosis signal-regulating kinase 1 activation. Knockdown of apoptosis signal-regulating kinase 1, or inhibition of its downstream effectors, JNK and p38 mitogen-activated protein kinase, reduces scavenger receptor A expression and foam cell formation. Notably, orai1 expression is increased in atherosclerotic plaques of apolipoprotein E(-/-) mice fed with high-cholesterol diet. Knockdown of orai1 with adenovirus harboring orai1 siRNA or inhibition of orai1 Ca(2+) entry with SKF96365 for 4 weeks dramatically inhibits atherosclerotic plaque development in high-cholesterol diet feeding apolipoprotein E(-/-) mice. In addition, inhibition of orai1 Ca(2+) entry prevents macrophage apoptosis in atherosclerotic plaque. Moreover, the expression of inflammatory genes in atherosclerotic lesions and the infiltration of myeloid cells into the aortic sinus plaques are decreased after blocking orai1 signaling. CONCLUSIONS: Orai1-dependent Ca(2+) entry promotes atherogenesis possibly by promoting foam cell formation and vascular inflammation, rendering orai1 Ca(2+) channel a potential therapeutic target against atherosclerosis.


Assuntos
Anticolesterolemiantes/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Calcineurina/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas LDL/farmacologia , MAP Quinase Quinase Quinase 5/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína ORAI1 , Placa Aterosclerótica , Interferência de RNA , Receptores Depuradores Classe A/metabolismo , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Addict Biol ; 22(4): 1057-1067, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26969418

RESUMO

Models of heroin addiction emphasize the role of disrupted frontostriatal circuitry supporting cognitive control processes. However, heroin addiction-related alterations in functional and structural interactions among brain regions, especially between the cerebral hemispheres, are rarely examined directly. Resting-state functional magnetic resonance imaging (fMRI) approaches, which reveal patterns of coherent spontaneous fluctuations in the fMRI signal, offer a means to quantify directly functional interactions between the hemispheres. The corpus callosum (CC), which connects homologous regions of the cortex, is the major conduit for information transfer between the cerebral hemispheres and represents a structural connectivity index between hemispheres. We compared interhemispheric voxel-mirrored homotopic connectivity (VMHC) and CC volume between 45 heroin dependent-individuals (HDIs) and 35 non-addict individuals. We observed significant reduction of VMHC in a number of regions, particularly the striatum/limbic system regions, and significant decrease in splenium and genu sub-regions of CC in HDI. Importantly, within HDI, VMHC in the dorsal lateral prefrontal cortex (DLPFC) correlated with genu CC volume, VMHC in the putamen, VMHC in the DLPFC and genu CC volume and splenium CC volume were negatively correlated with heroin duration and impulsivity traits. Further analyses demonstrated that impairment of VMHC of bilateral DLPFC partially mediated the association between genu CC volumes decreased and increased impulsivity in HDI. Our results reveal a substantial impairment of interhemispheric coordination in the HDI. Further, interhemispheric connectivity correlated with the duration of heroin abuse and higher impulsivity behavior in HDI. Our findings provide insight into a heroin addicts' related pathophysiology and reinforce an integrative view of the interhemispheric cerebral functional and structural organization.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Dependência de Heroína/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA