Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772954

RESUMO

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Assuntos
Aspergillus niger , Campos Magnéticos , Peptídeo Hidrolases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biomassa , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/genética
2.
Int J Bioprint ; 7(3): 370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286153

RESUMO

Heart diseases have become the main killer threatening human health, and various methods have been developed to study heart disease. Among them, heart-on-a-chip has emerged in recent years as a method for constructing disease (or normal) models in vitro and is considered as a promising tool to study heart diseases. Compared with other methods, the advantages of heart-on-a-chip include the high portability, high throughput, and the capability to mimic microenvironments in vivo. It has shown a great potential in disease mechanism study and drug screening. In this paper, we review the recent advances in heart-on-a-chip, including the fabrication methods (e.g., 3D bioprinting) and biomedical applications. By analyzing the structure of the existing heart-on-a-chip, we proposed that a highly integrated heart-on-a-chip includes four elements: Microfluidic chips, cells/microtissues, microactuators to construct the microenvironment, and microsensors for results readout. Finally, the current challenges and future directions of heart-on-a-chip are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA