Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400558

RESUMO

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica
2.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962385

RESUMO

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Eucariotos , Motivos de Aminoácidos/genética , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Eucariotos/genética , Internet
3.
Nucleic Acids Res ; 50(D1): D1515-D1521, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986598

RESUMO

The Evidence and Conclusion Ontology (ECO) is a community resource that provides an ontology of terms used to capture the type of evidence that supports biomedical annotations and assertions. Consistent capture of evidence information with ECO allows tracking of annotation provenance, establishment of quality control measures, and evidence-based data mining. ECO is in use by dozens of data repositories and resources with both specific and general areas of focus. ECO is continually being expanded and enhanced in response to user requests as well as our aim to adhere to community best-practices for ontology development. The ECO support team engages in multiple collaborations with other ontologies and annotating groups. Here we report on recent updates to the ECO ontology itself as well as associated resources that are available through this project. ECO project products are freely available for download from the project website (https://evidenceontology.org/) and GitHub (https://github.com/evidenceontology/evidenceontology). ECO is released into the public domain under a CC0 1.0 Universal license.


Assuntos
Biologia Computacional/normas , Bases de Dados Genéticas , Ontologia Genética , Software , Humanos , Anotação de Sequência Molecular
4.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718738

RESUMO

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Assuntos
Doenças Transmissíveis/genética , Bases de Dados de Proteínas , Interações Hospedeiro-Patógeno/genética , Domínios e Motivos de Interação entre Proteínas , Software , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Ciclo Celular/genética , Membrana Celular/química , Membrana Celular/metabolismo , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/virologia , Ciclinas/química , Ciclinas/genética , Ciclinas/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/virologia , Regulação da Expressão Gênica , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Camundongos , Anotação de Sequência Molecular , Ligação Proteica , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Vírus/genética , Vírus/metabolismo
5.
Nucleic Acids Res ; 50(D1): D648-D653, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34761267

RESUMO

The IntAct molecular interaction database (https://www.ebi.ac.uk/intact) is a curated resource of molecular interactions, derived from the scientific literature and from direct data depositions. As of August 2021, IntAct provides more than one million binary interactions, curated by twelve global partners of the International Molecular Exchange consortium, for which the IntAct database provides a shared curation and dissemination platform. The IMEx curation policy has always emphasised a fine-grained data and curation model, aiming to capture the relevant experimental detail essential for the interpretation of the provided molecular interaction data. Here, we present recent curation focus and progress, as well as a completely redeveloped website which presents IntAct data in a much more user-friendly and detailed way.


Assuntos
Bases de Dados de Proteínas , Mapas de Interação de Proteínas/genética , Software , Humanos , Mapeamento de Interação de Proteínas/métodos
6.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850135

RESUMO

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , DNA/genética , DNA/metabolismo , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo
7.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33517364

RESUMO

One of the most intriguing fields emerging in current molecular biology is the study of membraneless organelles formed via liquid-liquid phase separation (LLPS). These organelles perform crucial functions in cell regulation and signalling, and recent years have also brought about the understanding of the molecular mechanism of their formation. The LLPS field is continuously developing and optimizing dedicated in vitro and in vivo methods to identify and characterize these non-stoichiometric molecular condensates and the proteins able to drive or contribute to LLPS. Building on these observations, several computational tools and resources have emerged in parallel to serve as platforms for the collection, annotation and prediction of membraneless organelle-linked proteins. In this survey, we showcase recent advancements in LLPS bioinformatics, focusing on (i) available databases and ontologies that are necessary to describe the studied phenomena and the experimental results in an unambiguous way and (ii) prediction methods to assess the potential LLPS involvement of proteins. Through hands-on application of these resources on example proteins and representative datasets, we give a practical guide to show how they can be used in conjunction to provide in silico information on LLPS.


Assuntos
Bases de Dados Factuais , Modelos Químicos , Organelas/química , Proteínas/química , Proteínas/isolamento & purificação
8.
Nucleic Acids Res ; 48(D1): D360-D367, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31612960

RESUMO

Membraneless organelles (MOs) are dynamic liquid condensates that host a variety of specific cellular processes, such as ribosome biogenesis or RNA degradation. MOs form through liquid-liquid phase separation (LLPS), a process that relies on multivalent weak interactions of the constituent proteins and other macromolecules. Since the first discoveries of certain proteins being able to drive LLPS, it emerged as a general mechanism for the effective organization of cellular space that is exploited in all kingdoms of life. While numerous experimental studies report novel cases, the computational identification of LLPS drivers is lagging behind, and many open questions remain about the sequence determinants, composition, regulation and biological relevance of the resulting condensates. Our limited ability to overcome these issues is largely due to the lack of a dedicated LLPS database. Therefore, here we introduce PhaSePro (https://phasepro.elte.hu), an openly accessible, comprehensive, manually curated database of experimentally validated LLPS driver proteins/protein regions. It not only provides a wealth of information on such systems, but improves the standardization of data by introducing novel LLPS-specific controlled vocabularies. PhaSePro can be accessed through an appealing, user-friendly interface and thus has definite potential to become the central resource in this dynamically developing field.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Vocabulário Controlado , Organelas/metabolismo , Proteínas/metabolismo , Interface Usuário-Computador
9.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31713636

RESUMO

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Ontologias Biológicas , Curadoria de Dados , Anotação de Sequência Molecular
10.
Nucleic Acids Res ; 46(W1): W329-W337, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29860432

RESUMO

The structural states of proteins include ordered globular domains as well as intrinsically disordered protein regions that exist as highly flexible conformational ensembles in isolation. Various computational tools have been developed to discriminate ordered and disordered segments based on the amino acid sequence. However, properties of IDRs can also depend on various conditions, including binding to globular protein partners or environmental factors, such as redox potential. These cases provide further challenges for the computational characterization of disordered segments. In this work we present IUPred2A, a combined web interface that allows to generate energy estimation based predictions for ordered and disordered residues by IUPred2 and for disordered binding regions by ANCHOR2. The updated web server retains the robustness of the original programs but offers several new features. While only minor bug fixes are implemented for IUPred, the next version of ANCHOR is significantly improved through a new architecture and parameters optimized on novel datasets. In addition, redox-sensitive regions can also be highlighted through a novel experimental feature. The web server offers graphical and text outputs, a RESTful interface, access to software download and extensive help, and can be accessed at a new location: http://iupred2a.elte.hu.


Assuntos
Internet , Proteínas/genética , Software , Algoritmos , Oxirredução , Ligação Proteica , Conformação Proteica , Proteínas/química , Análise de Sequência de Proteína
11.
Nucleic Acids Res ; 46(D1): D471-D476, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136219

RESUMO

The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , Sítios de Ligação , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
12.
Proteomics ; 19(6): e1800070, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30628183

RESUMO

Recently developed quantitative redox proteomic studies enable the direct identification of redox-sensing cysteine residues that regulate the functional behavior of target proteins in response to changing levels of reactive oxygen species. At the molecular level, redox regulation can directly modify the active sites of enzymes, although a growing number of examples indicate the importance of an additional underlying mechanism that involves conditionally disordered proteins. These proteins alter their functional behavior by undergoing a disorder-to-order transition in response to changing redox conditions. However, the extent to which this mechanism is used in various proteomes is currently unknown. Here, a recently developed sequence-based prediction tool incorporated into the IUPred2A web server is used to estimate redox-sensitive conditionally disordered regions at a large scale. It is shown that redox-sensitive conditional disorder is fairly widespread in various proteomes and that its presence strongly correlates with the expansion of specific domains in multicellular organisms that largely rely on extra stability provided by disulfide bonds or zinc ion binding. The analyses of yeast redox proteomes and human disease data further underlie the significance of this phenomenon in the regulation of a wide range of biological processes, as well as its biomedical importance.


Assuntos
Cisteína/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Cisteína/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Bioinformatics ; 34(3): 535-537, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385418

RESUMO

Motivation: Intrinsically Disordered Proteins (IDPs) mediate crucial protein-protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP-mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Results: Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post-translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. Availability and implementation: DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. Contact: dosztanyi@caesar.elte.hu or bmeszaros@caesar.elte.hu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Proteínas Intrinsicamente Desordenadas/química
14.
Int J Mol Sci ; 20(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683980

RESUMO

Intrinsically disordered proteins mediate crucial biological functions through their interactions with other proteins. Mutual synergistic folding (MSF) occurs when all interacting proteins are disordered, folding into a stable structure in the course of the complex formation. In these cases, the folding and binding processes occur in parallel, lending the resulting structures uniquely heterogeneous features. Currently there are no dedicated classification approaches that take into account the particular biological and biophysical properties of MSF complexes. Here, we present a scalable clustering-based classification scheme, built on redundancy-filtered features that describe the sequence and structure properties of the complexes and the role of the interaction, which is directly responsible for structure formation. Using this approach, we define six major types of MSF complexes, corresponding to biologically meaningful groups. Hence, the presented method also shows that differences in binding strength, subcellular localization, and regulation are encoded in the sequence and structural properties of proteins. While current protein structure classification methods can also handle complex structures, we show that the developed scheme is fundamentally different, and since it takes into account defining features of MSF complexes, it serves as a better representation of structures arising through this specific interaction mode.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Humanos , Proteínas Intrinsicamente Desordenadas/classificação , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Termodinâmica
15.
Bioinformatics ; 33(22): 3682-3684, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036655

RESUMO

MOTIVATION: It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. RESULTS: Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. AVAILABILITY AND IMPLEMENTATION: MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. CONTACT: simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica
16.
Mol Syst Biol ; 11(11): 837, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26538579

RESUMO

Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/ultraestrutura , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Simulação de Acoplamento Molecular , Alinhamento de Sequência , Transdução de Sinais , Propriedades de Superfície
17.
Curr Opin Struct Biol ; 80: 102608, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182396

RESUMO

Recent advances in computational approaches and their integration into structural biology enable tackling increasingly complex questions. Here, we discuss several key areas, highlighting breakthroughs and remaining challenges. Theoretical modeling has provided tools to accurately predict and design protein structures on a scale currently difficult to achieve using experimental approaches. Molecular Dynamics simulations have become faster and more precise, delivering actionable information inaccessible by current experimental methods. Virtual screening workflows allow a high-throughput approach to discover ligands that bind and modulate protein function, while Machine Learning methods enable the design of proteins with new functionalities. Integrative structural biology combines several of these approaches, pushing the frontiers of structural and functional characterization to ever larger systems, advancing towards a complete understanding of the living cell. These breakthroughs will accelerate and significantly impact diverse areas of science.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Simulação de Dinâmica Molecular
18.
Brief Bioinform ; 11(2): 225-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007729

RESUMO

Intrinsically disordered/unstructured proteins exist without a stable three-dimensional (3D) structure as highly flexible conformational ensembles. The available genome sequences revealed that these proteins are surprisingly common and their frequency reaches high proportions in eukaryotes. Due to their vital role in various biological processes including signaling and regulation and their involvement in various diseases, disordered proteins and protein segments are the focus of many biochemical, molecular biological, pathological and pharmaceutical studies. These proteins are difficult to study experimentally because of the lack of unique structure in the isolated form. Their amino acid sequence, however, is available, and can be used for their identification and characterization by bioinformatic tools, analogously to globular proteins. In this review, we first present a small survey of current methods to identify disordered proteins or protein segments, focusing on those that are publicly available as web servers. In more detail we also discuss approaches that predict disordered regions and specific regions involved in protein binding by modeling the physical background of protein disorder. In our review we argue that the heterogeneity of disordered segments needs to be taken into account for a better understanding of protein disorder.


Assuntos
Biologia Computacional/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Dados de Sequência Molecular , Proteínas/genética , Proteínas/metabolismo
19.
PLoS Comput Biol ; 7(7): e1002118, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21814507

RESUMO

Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Antibacterianos/farmacologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Sequência Conservada , Desenho de Fármacos , Genômica/métodos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Análise de Sequência de Proteína , Tuberculose/microbiologia
20.
Database (Oxford) ; 2022(2022)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234850

RESUMO

The postsynaptic region is the receiving part of the synapse comprising thousands of proteins forming an elaborate and dynamically changing network indispensable for the molecular mechanisms behind fundamental phenomena such as learning and memory. Despite the growing amount of information about individual protein-protein interactions (PPIs) in this network, these data are mostly scattered in the literature or stored in generic databases that are not designed to display aspects that are fundamental to the understanding of postsynaptic functions. To overcome these limitations, we collected postsynaptic PPIs complemented by a high amount of detailed structural and biological information and launched a freely available resource, the Postsynaptic Interaction Database (PSINDB), to make these data and annotations accessible. PSINDB includes tens of thousands of binding regions together with structural features, mediating and regulating the formation of PPIs, annotated with detailed experimental information about each interaction. PSINDB is expected to be useful for various aspects of molecular neurobiology research, from experimental design to network and systems biology-based modeling and analysis of changes in the protein network upon various stimuli. Database URL https://psindb.itk.ppke.hu/.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Bases de Dados de Proteínas , Mapas de Interação de Proteínas , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA