Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106285

RESUMO

Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified. GABAa mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, was shown to participate to ictogenesis in human pediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is still unclear. Here we studied the post translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCC), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and ultimately GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo controls, diagnosed by histology plus genetic profiling) were operated for drug resistant epilepsy. Postoperative cortical tissues were recorded on multielectrode array (MEA) to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled Cl- conductance and equilibrium potential (EGABA) for GABA measurement. Of the 25 clinical cases, half harbored a somatic mutation in the mTOR pathway, while pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, that was reversed by WNK1 and SPAK antagonists (NEM and Staurosporine). mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR specific antagonist Rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in EGABA by rapamycin, measured after incorporation of MCD membranes to X. laevis oocytes, in line with a reestablishment of normal ECl-. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to chloride cotransporters deregulation, increased neuronal chloride levels and GABAa dysfunction in malformations of Cortical Development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.

2.
Histopathology ; 84(5): 893-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253970

RESUMO

AIMS: The SOX10 transcription factor is important for the maturation of oligodendrocytes involved in central nervous system (CNS) myelination. Currently, very little information exists about its expression and potential use in CNS tumour diagnoses. The aim of our study was to characterize the expression of SOX10 in a large cohort of CNS tumours and to evaluate its potential use as a biomarker. METHODS: We performed immunohistochemistry (IHC) for SOX10 and OLIG2 in a series of 683 cases of adult- and paediatric-type CNS tumours from different subtypes. The nuclear immunostaining results for SOX10 and OLIG2 were scored as positive (≥10% positive tumour cells) or negative. RESULTS: OLIG2 and SOX10 were positive in diffuse midline gliomas (DMG), H3-mutant, and EZHIP-overexpressed. However, in all DMG, EGFR-mutant, SOX10 was constantly negative. In diffuse paediatric-type high-grade gliomas (HGG), all RTK1 cases were positive for both OLIG2 and SOX10. RTK2 cases were all negative for both OLIG2 and SOX10. MYCN cases variably expressed OLIG2 and were all immunonegative for SOX10. In glioblastoma, IDH-wildtype, OLIG2 was mostly positive, but SOX10 was variably expressed, depending on the epigenetic subtype. All circumscribed astrocytic gliomas were positive for both OLIG2 and SOX10 except pleomorphic xanthoastrocytomas, astroblastomas, MN1-altered, and subependymal giant cell astrocytomas. SOX10 was negative in ependymomas, meningiomas, pinealoblastomas, choroid plexus tumours, intracranial Ewing sarcomas, and embryonal tumours except neuroblastoma, FOXR2-activated. CONCLUSION: To conclude, SOX10 can be incorporated into the IHC panel routinely used by neuropathologists in the diagnostic algorithm of embryonal tumours and for the subtyping of paediatric and adult-type HGG.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Embrionárias de Células Germinativas , Adulto , Humanos , Criança , Imuno-Histoquímica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores Tumorais/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Astrocitoma/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Fatores de Transcrição SOXE , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição Forkhead
3.
Acta Neuropathol ; 145(1): 83-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264505

RESUMO

Pediatric spinal low-grade glioma (LGG) and glioneuronal tumours are rare, accounting for less 2.8-5.2% of pediatric LGG. New tumour types frequently found in spinal location such as diffuse leptomeningeal glioneuronal tumours (DLGNT) have been added to the World Health Organization (WHO) classification of tumours of the central nervous system since 2016, but their distinction from others gliomas and particularly from pilocytic astrocytoma (PA) are poorly defined. Most large studies on this subject were published before the era of the molecular diagnosis and did not address the differential diagnosis between PAs and DLGNTs in this peculiar location. Our study retrospectively examined a cohort of 28 children with LGGs and glioneuronal intramedullary tumours using detailed radiological, clinico-pathological and molecular analysis. 25% of spinal PAs were reclassified as DLGNTs. PA and DLGNT are nearly indistinguishable in histopathology or neuroradiology. 83% of spinal DLGNTs presented first without leptomeningeal contrast enhancement. Unsupervised t-distributed stochastic neighbor embedding (t-SNE) analysis of DNA methylation profiles showed that spinal PAs formed a unique methylation cluster distinct from reference midline and posterior fossa PAs, whereas spinal DLGNTs clustered with reference DLGNT cohort. FGFR1 alterations were found in 36% of spinal tumours and were restricted to PAs. Spinal PAs affected significantly younger patients (median age 2 years old) than DLGNTs (median age 8.2 years old). Progression-free survival was similar among the two groups. In this location, histopathology and radiology are of limited interest, but molecular data (methyloma, 1p and FGFR1 status) represent important tools differentiating these two mitogen-activated protein kinase (MAPK) altered tumour types, PA and DLGNT. Thus, these molecular alterations should systematically be explored in this type of tumour in a spinal location.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Criança , Pré-Escolar , Estudos Retrospectivos , Astrocitoma/patologia , Neoplasias do Sistema Nervoso Central/genética , Glioma/genética , Epigênese Genética , Neoplasias Encefálicas/genética
4.
Histopathology ; 82(4): 596-607, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36413100

RESUMO

AIMS: NTRK gene fusions have been described in a wide variety of central nervous system (CNS) and soft tissue tumours, including the provisional tumour type 'spindle cell neoplasm, NTRK-rearranged' (SCN-NTRK), added to the 2020 World Health Organisation Classification of Soft Tissue Tumours. Because of histopathological and molecular overlaps with other soft tissue entities, controversy remains concerning the lineage and terminology of SCN-NTRK. METHODS AND RESULTS: This study included 16 mesenchymal tumours displaying kinase gene fusions (NTRK fusions and one MET fusion) initially diagnosed as infantile fibrosarcomas (IFS), SCN-NTRK and adult-type fibrosarcomas from the soft tissue, viscera and CNS. We used immunohistochemistry, DNA methylation profiling, whole RNA-sequencing and ultrastructural analysis to characterise them. Unsupervised t-distributed stochastic neighbour embedding analysis showed that 11 cases (two CNS tumours and nine extra-CNS) formed a unique and new methylation cluster, while all tumours but one, initially diagnosed as IFS, clustered in a distinct methylation class. All the tumours except one formed a single cluster within the hierarchical clustering of whole RNA-sequencing data. Tumours from the novel methylation class co-expressed CD34 and S100, had variable histopathological grades and frequently displayed a CDKN2A deletion. Ultrastructural analyses evidenced a myofibroblastic differentiation. CONCLUSIONS: Our findings confirm that SCN-NTRK share similar features in adults and children and in all locations combine an infiltrative pattern, distinct epigenetic and transcriptomic profiles, and ultrastructural evidence of a myofibroblastic lineage. Further studies may support the use of new terminology to better describe their myofibroblastic nature.


Assuntos
Fibrossarcoma , Neoplasias , Neoplasias de Tecidos Moles , Criança , Adulto , Humanos , Receptor trkA/genética , Metilação , Neoplasias/patologia , Neoplasias de Tecidos Moles/genética , Fibrossarcoma/genética , RNA , Proteínas de Fusão Oncogênica/genética
5.
Ann Pathol ; 43(1): 7-12, 2023 Jan.
Artigo em Francês | MEDLINE | ID: mdl-35710499

RESUMO

Diagnostic updates, an increased precision of tumor sub-type classification and the development of new diagnostic biomarkers (immunohistochemistry (IHC), Fluorescence in situ hybridization (FISH) and other molecular pathology techniques), have a significant impact on pathologists' management of tissue samples. The objective of this work was to test and validate the FISH technique on detached IHC slides. An IHC technique was first performed on 30 tissue samples. After detachment of the lamella, a FISH technique was then performed according to the usual protocol with a centromeric probe. A validation cohort (n=10) with duplicate testing using a traditional FISH technique and an IHC slide with a detached lamella was then carried out. Finally, a cohort of 20 "old" cases (IHC carried out over 2years ago) was also tested. Different types of probes (specific locus, break apart) have been used. All the slides were interpreted by a technician and a pathologist. Evaluation criteria were: the general interpretability of the slide ; the percentage of labeled nuclei; intensity of the signal and the presence or absence of autofluorescence. FISH was interpretable in 100% of recently treated cases and 90% of "old" cases with a satisfactory intensity and a high percentage of labeled nuclei, without autofluorescence. The results of our study show that the reuse of IHC slides for performing FISH is a powerful means of economizing tissue samples, especially for small samples and in the absence of archived representative material.


Assuntos
Patologistas , Humanos , Hibridização in Situ Fluorescente/métodos , Imuno-Histoquímica
6.
Ann Pathol ; 43(6): 443-451, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-37385935

RESUMO

The fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System has identified many new tumor types and has established, for the first time, essential and desirable diagnostic criteria for each of them. Among these, genetic alterations play an important role associated with morphology. For the first time, epigenetic data can also constitute essential and/or desirable criteria. These genetic abnormalities can be fusions, deletions or gains/amplifications and can thus be detected by fluorescence in situ hybridization techniques. The purpose of this article is to present the advantages and limitations of this technique in reference to its specific use within neuro-oncopathology in light of the 2021 WHO classification.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Retroalimentação , Hibridização in Situ Fluorescente , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Organização Mundial da Saúde , Hospitais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética
7.
Neuropathol Appl Neurobiol ; 48(2): e12769, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551121

RESUMO

AIMS: We searched for recurrent pathological features and molecular alterations in a retrospective series of 72 low-grade epilepsy-associated neuroepithelial tumours (LEATs) with a prominent oligodendroglioma-like component, in order to classify them according to the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumours. METHODS: Centralised pathological examination was performed as well as targeted molecular analysis of v-Raf murine sarcoma viral oncogene homologue B (BRAF) and fibroblast growth factor receptor 1 (FGFR1) by multiplexed digital polymerase chain reaction (mdPCR). DNA methylation profiling was performed in cases with sufficient DNA. In cases with no genetic alteration by mdPCR and sufficient material, RNA sequencing was done. RESULTS: We first reclassified our cohort into three groups: ganglioglioma (GG, n = 14), dysembryoplastic neuroepithelial tumours (DNTs, n = 19) and glioneuronal tumours/paediatric-type low-grade glioma (LGG) not otherwise specified (GNT/PLGG NOS, n = 39). mdPCR found an alteration in 38/72 cases. Subsequent RNA sequencing revealed a fusion transcript involving BRAF, FGFR1/2/3 or neurotrophic tyrosine kinase receptor type 2 [NTRK2] in 9/25 cases. DNA methylation profiling found 12/46 cases with a calibrated score ≥0.9. Unsupervised hierarchical clustering revealed two clusters: Cluster 1 was enriched with cases classified as DNT at histology, belonging to the LGG-DNT methylation class (MC), with haematopoietic progenitor cell antigen (CD34) negativity and FGRF1 alterations; Cluster 2 was enriched with cases classified at histology as GG, belonging to the LGG-GG MC MC, with BRAF V600E mutation and CD34 positivity. The tumours reclassified as GNT/PLGG NOS were equally distributed across both clusters. Interestingly, all polymorphous low-grade neuroepithelial tumour of the young belonged to Cluster 2, whereas diffuse LGG mitogen-activated protein kinase (MAPK) pathway-altered were equally distributed among the two clusters. This led us to build an algorithm to classify LEATs with a prominent oligodendroglioma-like component. CONCLUSIONS: Integrated histomolecular diagnosis of LEATs with a prominent oligodendroglioma-like component remains challenging. Because these tumours can be split into two major clusters of biological significance, the clinicopathological relevance of the four types recognised by the WHO CNS5 within this spectrum of tumours is questionable.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Neoplasias Neuroepiteliomatosas/patologia , Oligodendroglia/patologia , Adolescente , Adulto , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Metilação de DNA , Epilepsia/etiologia , Epilepsia/genética , Feminino , Humanos , Lactente , Masculino , Neoplasias Neuroepiteliomatosas/complicações , Neoplasias Neuroepiteliomatosas/genética , Estudos Retrospectivos , Adulto Jovem
8.
Neuropathol Appl Neurobiol ; 48(6): e12834, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35836307

RESUMO

AIMS: Dysembryoplastic neuroepithelial tumour (DNT) is a glioneuronal tumour that is challenging to diagnose, with a wide spectrum of histological features. Three histopathological patterns have been described: specific DNTs (both the simple form and the complex form) comprising the specific glioneuronal element, and also the non-specific/diffuse form which lacks it, and has unclear phenotype-genotype correlations with numerous differential diagnoses. METHODS: We used targeted methods (immunohistochemistry, fluorescence in situ hybridisation and targeted sequencing) and large-scale genomic methodologies including DNA methylation profiling to perform an integrative analysis to better characterise a large retrospective cohort of 82 DNTs, enriched for tumours that showed progression on imaging. RESULTS: We confirmed that specific DNTs are characterised by a single driver event with a high frequency of FGFR1 variants. However, a subset of DNA methylation-confirmed DNTs harbour alternative genomic alterations to FGFR1 duplication/mutation. We also demonstrated that a subset of DNTs sharing the same FGFR1 alterations can show in situ progression. In contrast to the specific forms, "non-specific/diffuse DNTs" corresponded to a heterogeneous molecular group encompassing diverse, newly-described, molecularly distinct entities. CONCLUSIONS: Specific DNT is a homogeneous group of tumours sharing characteristics of paediatric low-grade gliomas: a quiet genome with a recurrent genomic alteration in the RAS-MAPK signalling pathway, a distinct DNA methylation profile and a good prognosis but showing progression in some cases. The "non-specific/diffuse DNTs" subgroup encompasses various recently described histomolecular entities, such as PLNTY and diffuse astrocytoma, MYB or MYBL1 altered.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Neuroepiteliomatosas , Neoplasias Encefálicas/patologia , Genômica , Humanos , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Estudos Retrospectivos
9.
Ann Pathol ; 42(5): 367-382, 2022 Oct.
Artigo em Francês | MEDLINE | ID: mdl-34865882

RESUMO

Rapid technical advances in molecular biology allowed for the identification of key genetic alterations in central nervous system (CNS) tumors. Our ever-expanding knowledge of brain tumor genetics and the development of new technologies, such as DNA-methylation profiling, required an update of the 2016 fourth edition of the WHO classification of CNS tumors. Updates were regularly published by the Consortium to Inform Molecular Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (c-IMPACT-NOW) until the publication of the fifth edition of the WHO classification of CNS tumors in 2021. In that edition, new types and subtypes are introduced and criteria for histo-molecular diagnostic and grading are refined, especially for diffuse gliomas. The definition of a broad category "diffuse glioma, pediatric subtype" (low or high grade) is a major improvement of the classification. Moreover, the nomenclature was simplified and aligned with that of other blue books. The 2021 edition truly advances the role of molecular diagnostics in CNS tumor classification. Methyloma profiling may become a cornerstone of CNS tumor diagnostic. The new WHO classification will lead to better management of brain tumor patients.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias do Sistema Nervoso Central/patologia , Criança , DNA , Glioma/diagnóstico , Glioma/patologia , Humanos , Organização Mundial da Saúde
10.
J Neurooncol ; 155(3): 287-295, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34686993

RESUMO

PURPOSE: We aimed to compare spatial extent of high-grade subregions detected with combined [18F]-dihydroxyphenylalanine (18F-DOPA) PET and MRI to the one provided by advanced multimodal MRI alone including Contrast-enhanced (CE) and Perfusion weighted imaging (PWI). Then, we compared the accuracy between imaging modalities, in a per biopsy analysis. METHODS: Participants with suspected diffuse glioma were prospectively included between June 2018 and September 2019. Volumes of high-grade subregions were delineated respectively on 18F-DOPA PET and MRI (CE and PWI). Up to three per-surgical neuronavigation-guided biopsies were performed per patient. RESULTS: Thirty-eight biopsy samples from sixteen participants were analyzed. Six participants (38%) had grade IV IDH wild-type glioblastoma, six (38%) had grade III IDH-mutated astrocytoma and four (24%) had grade II IDH-mutated gliomas. Three patients had intratumoral heterogeneity with coexisting high- and low-grade tumor subregions. High-grade volumes determined with combined 18F-DOPA PET/MRI (median of 1.7 [interquartile range (IQR) 0.0, 19.1] mL) were larger than with multimodal MRI alone (median 1.3 [IQR 0.0, 12.8] mL) with low overlap (median Dice's coefficient 0.24 [IQR 0.08, 0.59]). Delineation volumes were substantially increased in five (31%) patients. In a per biopsy analysis, combined 18F-DOPA PET/MRI detected high-grade subregions with an accuracy of 58% compared to 42% (p = 0.03) with CE MRI alone and 50% (p = 0.25) using multimodal MRI (CE + PWI). CONCLUSIONS: The addition of 18F-DOPA PET to multimodal MRI (CE and PWI) enlarged the delineation volumes and enhanced overall accuracy for detection of high-grade subregions. Thus, combining 18F-DOPA with advanced MRI may improve treatment planning in newly diagnosed gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Biópsia , Neoplasias Encefálicas/diagnóstico por imagem , Di-Hidroxifenilalanina/análogos & derivados , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Perfusão , Tomografia por Emissão de Pósitrons
11.
Ann Pathol ; 41(2): 137-153, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33712303

RESUMO

While rare compared to extra-cranial neoplasms, glial and glioneuronal tumors are responsible of high morbidity and mortality. In 2016, the World Health Organization introduced histo-molecular ("integrated") diagnostics for central nervous system tumors based on morphology, immunohistochemistry and the presence of key genetic alterations. This combined phenotypic-genotypic classification allows for a more objective diagnostic of brain tumors. The implementation of such a classification in daily practice requires immunohistochemical surrogates to detect common genetic alterations and sometimes expensive and not widely available molecular biology techniques. The first step in brain tumor diagnostics is to inquire about the clinical picture and the imaging findings. When dealing with a glial tumor, the pathologist needs to assess its nature, infiltrative or circumscribed. If the tumor is infiltrative, IDH1/2 genes (prognostic marker) and chromosomes 1p/19q (diagnosis of oligodendroglioma) need to be assessed. If the tumor appears circumscribed, the pathologist should look for a neuronal component associated with the glial component (glioneuronal tumor). A limited immunohistochemistry panel will help distinguish between diffuse glioma (IDH1-R132H, ATRX, p53) and circumscribed glial/glioneuronal tumor (CD34, neuronal markers, BRAF-V600E), and some antibodies may reliably detect genetic alterations (IDH1-R132H, BRAF-V600E and H3-K27M mutations). Chromosomal imbalances (1p/19q codeletion in oligodendroglioma; chromosome 7 gain/chromosome 10 loss and EGFR amplification in glioblastoma) and gene rearrangements (BRAF fusion, FGFR1 fusion) will be identified by molecular biology techniques. The up-coming edition of the WHO classification of the central nervous system tumors will rely more heavily on molecular alterations to accurately diagnose and treat brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Neuroglia , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética
17.
Acta Neuropathol Commun ; 12(1): 104, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926880

RESUMO

A novel histomolecular tumor of the central nervous system (CNS), the "diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC)," has recently been identified, based on a distinct DNA methylation profile and has been added to the 2021 World Health Organization Classification of CNS Tumors. This glioneuronal tumor mainly affects the supratentorial area in children and recurrently presents with a monosomy of chromosome 14. Herein, we report the case of a DNA-methylation based diagnosis of DGONC having atypical features, such as pseudo-rosettes and the absence of a chromosome 14 monosomy, thus rendering its diagnosis very challenging. Because of the wide variety of morphologies harbored by DGONC, a large range of differential diagnoses may be hypothesized from benign to malignant. Interestingly, the current case, like one previously reported, exhibited a co-expression of OLIG2, synaptophysin and SOX10, without GFAP immunopositivity. This particular immunophenotype seems to be a good indicator for a DGONC diagnosis. The classification of DGONC amongst glioneuronal or embryonal tumors is still debated. The clinical (a pediatric supratentorial tumor), morphological (from a benign oligodendroglioma-like tumor with microcalcifications and possible neuropil-like islands to a malignant embryonal tumor with a possible spongioblastic pattern), and immunohistochemical (co-expression of OLIG2 and synaptophsyin) profiles resemble CNS, neuroblastoma, FOXR2-activated and may potentially bring them together in a future classification. Further comprehensive studies are needed to conclude the cellular origin of DGONC and its prognosis.


Assuntos
Neoplasias Encefálicas , Oligodendroglioma , Criança , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Metilação de DNA , Oligodendroglioma/patologia , Oligodendroglioma/genética
18.
Brain Pathol ; 34(6): e13259, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38565263

RESUMO

Meningioangiomatosis (MAM) remains a poorly understood lesion responsible for epileptic disease. In the past, MAM was primarily described in the context of neurofibromatosis type 2 before being mainly reported sporadically. Moreover, the malformative or tumoral nature is still debated. Because a subset of MAM are associated with meningiomas, some authors argue that MAM corresponds to an infiltration pattern of these tumors. For these reasons, MAM has not been added to the World Health Organization (WHO) Classification of Central Nervous System Tumors as a specific entity. In the present study, we characterized a series of pure MAM (n = 7) and MAM associated with meningiomas (n = 4) using histopathology, immunohistochemistry, genetic (fluorescent in situ and DNA sequencing analyses), and epigenetic (DNA-methylation profiling) data. We evidenced two distinct morphological patterns: MAM with a fibroblastic-like pattern having few lesional cells, and MAM with a more cellular pattern. A subset was associated with the genetic alterations previously reported in meningiomas (such as a KMT2C mutation and a hemizygous deletion of chromosome 22q including the NF2 gene). The DNA-methylation profile, using a t-distributed stochastic neighbor embedding analysis, evidenced that MAM (pure or associated with meningiomas) clustered in a separate group from pediatric meningiomas. The present results seem to suggest that MAM represents a neoplastic lesion and encourage the further study of similar additional series so that it may be included in a future WHO classification.


Assuntos
Metilação de DNA , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/patologia , Meningioma/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Criança , Adulto Jovem , Adolescente , Pré-Escolar
20.
J Neuropathol Exp Neurol ; 83(2): 115-124, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38237135

RESUMO

Pilocytic astrocytomas (PA) typically exhibit distinct clinical, radiological, histopathological, and genetic features. DNA-methylation profiling distinguishes PA according to their location (infratentorial, midline, hemispheric, or spinal). In the hemispheric location, distinguishing PA from glioneuronal tumors remains a common diagnostic challenge for neuropathologists. Furthermore, the current version of the DKFZ classifier seems to have difficulty separating them from gangliogliomas. In this study, after central radiological review, we identified a histopathologically defined set of PA (histPA, n = 11) and a cohort of DNA-methylation defined PA (mcPA, n = 11). Nine out of the 11 histPA matched the methylation class of hemispheric PA, whereas 2 cases were classified at the end of the study as dysembryoplastic neuroepithelial tumors. Similarly, the mcPA cohort contained tumors mainly classified as PA (7/11), but 4 cases were classified as glioneuronal. The analysis of the 16 tumors with an integrated diagnosis of PA revealed that they affect mainly children with a wide spectrum of radiological, histopathological (i.e. a predominantly diffuse growth pattern), and genetic characteristics (large range of mitogen-activated protein kinase alterations). Based on these results, we consider hemispheric PA to be different from their counterparts in other locations and to overlap with other glioneuronal tumors, reinforcing the necessity of interpreting all data to obtain an accurate diagnosis.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Neuroepiteliomatosas , Criança , Humanos , Astrocitoma/patologia , Glioma/genética , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA