Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231043

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

2.
Small ; 19(43): e2208042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376850

RESUMO

Fasting has many health benefits, including reduced chemotherapy toxicity and improved efficacy. It is unclear how fasting affects the tumor microenvironment (TME) and tumor-targeted drug delivery. Here the effects of intermittent (IF) and short-term (STF) fasting are investigated on tumor growth, TME composition, and liposome delivery in allogeneic hepatocellular carcinoma (HCC) mouse models. To this end, mice are inoculated either subcutaneously or intrahepatically with Hep-55.1C cells and subjected to IF for 24 d or to STF for 1 d. IF but not STF significantly slows down tumor growth. IF increases tumor vascularization and decreases collagen density, resulting in improved liposome delivery. In vitro, fasting furthermore promotes the tumor cell uptake of liposomes. These results demonstrate that IF shapes the TME in HCC towards enhanced drug delivery. Finally, when combining IF with liposomal doxorubicin treatment, the antitumor efficacy of nanochemotherapy is found to be increased, while systemic side effects are reduced. Altogether, these findings exemplify that the beneficial effects of fasting on anticancer therapy outcomes go beyond modulating metabolism at the molecular level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Lipossomos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Jejum Intermitente , Nanomedicina , Microambiente Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
3.
Circ Res ; 126(8): e37-e52, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32089086

RESUMO

RATIONALE: Cholesterol crystal embolism can be a life-threatening complication of advanced atherosclerosis. Pathophysiology and molecular targets for treatment are largely unknown. OBJECTIVE: We aimed to develop a new animal model of cholesterol crystal embolism to dissect the molecular mechanisms of cholesterol crystal (CC)-driven arterial occlusion, tissue infarction, and organ failure. METHODS AND RESULTS: C57BL/6J mice were injected with CC into the left kidney artery. Primary end point was glomerular filtration rate (GFR). CC caused crystal clots occluding intrarenal arteries and a dose-dependent drop in GFR, followed by GFR recovery within 4 weeks, that is, acute kidney disease. In contrast, the extent of kidney infarction was more variable. Blocking necroptosis using mixed lineage kinase domain-like deficient mice or necrostatin-1s treatment protected from kidney infarction but not from GFR loss because arterial obstructions persisted, identifying crystal clots as a primary target to prevent organ failure. CC involved platelets, neutrophils, fibrin, and extracellular DNA. Neutrophil depletion or inhibition of the release of neutrophil extracellular traps had little effects, but platelet P2Y12 receptor antagonism with clopidogrel, fibrinolysis with urokinase, or DNA digestion with recombinant DNase I all prevented arterial occlusions, GFR loss, and kidney infarction. The window-of-opportunity was <3 hours after CC injection. However, combining Nec-1s (necrostatin-1s) prophylaxis given 1 hour before and DNase I 3 hours after CC injection completely prevented kidney failure and infarcts. In vitro, CC did not directly induce plasmatic coagulation but induced neutrophil extracellular trap formation and DNA release mainly from kidney endothelial cells, neutrophils, and few from platelets. CC induced ATP release from aggregating platelets, which increased fibrin formation in a DNase-dependent manner. CONCLUSIONS: CC embolism causes arterial obstructions and organ failure via the formation of crystal clots with fibrin, platelets, and extracellular DNA as critical components. Therefore, our model enables to unravel the pathogenesis of the CC embolism syndrome as a basis for both prophylaxis and targeted therapy.


Assuntos
Colesterol/toxicidade , Embolia de Colesterol/patologia , Rim/irrigação sanguínea , Rim/patologia , Insuficiência Renal/patologia , Animais , Embolia de Colesterol/induzido quimicamente , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal/induzido quimicamente
4.
Gastroenterology ; 156(6): 1877-1889.e4, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710528

RESUMO

BACKGROUND & AIMS: Inflammation in the liver provokes fibrosis, but inflammation is also important for tumor surveillance. Inhibitors of chemokine pathways, such as CXCL16 and CXCR6 regulation of lymphocyte trafficking, are being tested as antifibrotic agents, but their effects on the development of hepatocellular carcinoma (HCC) are unclear. We assessed the roles of CXCR6-dependent immune mechanisms in hepatocarcinogenesis. METHODS: C57BL/6J wild-type (WT) mice and CXCR6-deficient mice (Cxcr6eGfp/eGfp) were given injections of diethylnitrosamine (DEN) to induce liver cancer and α-galactosylceramide to activate natural killer T (NKT) cells. We also performed studies in mice with conditional, hepatocyte-specific deletion of NEMO, which develop inflammation-associated liver tumors (NemoLPC-KO and NemoLPC-KOCxcr6eGfp/eGfp mice). We collected liver tissues from patients with cirrhosis (n = 43), HCC (n = 35), and neither of these diseases (control individuals, n = 25). Human and mouse liver tissues were analyzed by histology, immunohistochemistry, flow cytometry, RNA expression arrays (from sorted hepatic lymphocytes), and matrix-assisted laser desorption/ionization imaging. Bone marrow was transferred from Cxcr6eGfp/eGfp or WT mice to irradiated C57BL/6J mice, and spleen and liver cells were analyzed by flow cytometry. CD4+ T cells or NKT cells were isolated from the spleen and liver of CD45.1+ WT mice and transferred into CXCR6-deficient mice after DEN injection. RESULTS: After DEN injection, CXCR6-deficient mice had a significantly higher tumor burden than WT mice and increased tumor progression, characterized by reduced intrahepatic numbers of invariant NKT and CD4+ T cells that express tumor necrosis factor and interferon gamma. Livers of NemoLPC-KOCxcr6eGfp/eGfp mice had significantly more senescent hepatocytes than livers of NemoLPC-KO mice. In studies of bone-marrow chimeras, adoptive cell transfer experiments, and analyses of NemoLPC-KO mice, we found that NKT and CD4 T cells promote the removal of senescent hepatocytes to prevent hepatocarcinogenesis, and that this process required CXCR6. Injection of WT with α-galactosylceramide increased removal of senescent hepatocytes by NKT cells. We observed peritumoral accumulation of CXCR6-associated lymphocytes in human HCC, which appeared reduced compared with cirrhosis tissues. CONCLUSIONS: In studies of mice with liver tumors, we found that CXCR6 mediated NKT-cell and CD4+ T-cell removal of senescent hepatocytes. Antifibrotic strategies to reduce CXCR6 activity in liver, or to reduce inflammation or modulate the immune response, should be tested for their effects on hepatocarcinogenesis.


Assuntos
Carcinogênese/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células T Matadoras Naturais/imunologia , Receptores CXCR6/genética , Receptores CXCR6/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Senescência Celular , Dietilnitrosamina , Progressão da Doença , Galactosilceramidas/farmacologia , Hepatócitos/fisiologia , Humanos , Vigilância Imunológica/genética , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores CXCR6/metabolismo , Carga Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Small ; 16(18): e1907574, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250017

RESUMO

The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Peptídeos , Polietilenoglicóis , Sarcosina/análogos & derivados
6.
Angiogenesis ; 19(2): 245-254, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26902100

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Integrina alfaVbeta3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
7.
Am J Pathol ; 184(2): 431-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262753

RESUMO

Angiogenesis is a hallmark of cancer, and its noninvasive visualization and quantification are key factors for facilitating translational anticancer research. Using four tumor models characterized by different degrees of aggressiveness and angiogenesis, we show that the combination of functional in vivo and anatomical ex vivo X-ray micro-computed tomography (µCT) allows highly accurate quantification of relative blood volume (rBV) and highly detailed three-dimensional analysis of the vascular network in tumors. Depending on the tumor model, rBV values determined using in vivo µCT ranged from 2.6% to 6.0%, and corresponds well with the values assessed using IHC. Using ultra-high-resolution ex vivo µCT, blood vessels as small as 3.4 µm and vessel branches up to the seventh order could be visualized, enabling a highly detailed and quantitative analysis of the three-dimensional micromorphology of tumor vessels. Microvascular parameters such as vessel size and vessel branching correlated very well with tumor aggressiveness and angiogenesis. In rapidly growing and highly angiogenic A431 tumors, the majority of vessels were small and branched only once or twice, whereas in slowly growing A549 tumors, the vessels were much larger and branched four to seven times. Thus, we consider that combining highly accurate functional with highly detailed anatomical µCT is a useful tool for facilitating high-throughput, quantitative, and translational (anti-) angiogenesis and antiangiogenesis research.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Microtomografia por Raio-X , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/patologia , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Gut ; 63(12): 1960-1971, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24561613

RESUMO

OBJECTIVES: In chronic liver injury, angiogenesis, the formation of new blood vessels from pre-existing ones, may contribute to progressive hepatic fibrosis and to development of hepatocellular carcinoma. Although hypoxia-induced expression of vascular endothelial growth factor (VEGF) occurs in advanced fibrosis, we hypothesised that inflammation may endorse hepatic angiogenesis already at early stages of fibrosis. DESIGN: Angiogenesis in livers of c57BL/6 mice upon carbon tetrachloride- or bile duct ligation-induced chronic hepatic injury was non-invasively monitored using in vivo contrast-enhanced micro computed tomography (µCT) and ex vivo anatomical µCT after hepatic Microfil perfusion. Functional contributions of monocyte-derived macrophage subsets for angiogenesis were explored by pharmacological inhibition of CCL2 using the Spiegelmer mNOX-E36. RESULTS: Contrast-enhanced in vivo µCT imaging allowed non-invasive monitoring of the close correlation of angiogenesis, reflected by functional hepatic blood vessel expansion, with experimental fibrosis progression. On a cellular level, inflammatory monocyte-derived macrophages massively accumulated in injured livers, colocalised with newly formed vessels in portal tracts and exhibited pro-angiogenic gene profiles including upregulated VEGF and MMP9. Functional in vivo and anatomical ex vivo µCT analyses demonstrated that inhibition of monocyte infiltration by targeting the chemokine CCL2 prevented fibrosis-associated angiogenesis, but not fibrosis progression. Monocyte-derived macrophages primarily fostered sprouting angiogenesis within the portal vein tract. Portal vein diameter as a measure of portal hypertension depended on fibrosis, but not on angiogenesis. CONCLUSIONS: Inflammation-associated angiogenesis is promoted by CCL2-dependent monocytes during fibrosis progression. Innovative in vivo µCT methodology can accurately monitor angiogenesis and antiangiogenic therapy effects in experimental liver fibrosis.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Quimiocina CCL2 , Cirrose Hepática , Macrófagos , Neovascularização Patológica , Animais , Tetracloreto de Carbono/farmacologia , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Microtomografia por Raio-X/métodos
9.
Adv Funct Mater ; 24(6): 754-762, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24569840

RESUMO

Non-invasive imaging holds significant potential for implementation in tissue engineering. It can e.g. be used to monitor the localization and function of tissue-engineered implants, as well as their resorption and remodelling. Thus far, however, the vast majority of efforts in this area of research have focused on the use of ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticle-labeled cells, colonizing the scaffolds, to indirectly image the implant material. Reasoning that directly labeling scaffold materials might be more beneficial (enabling imaging also in case of non-cellularized implants), more informative (enabling the non-invasive visualization and quantification of scaffold degradation) and more easy to translate into the clinic (since cell-free materials are less complex from a regulatory point-of-view), we here prepared three different types of USPIO nanoparticles, and incorporated them both passively and actively (via chemical conjugation; during collagen crosslinking) into collagen-based scaffold materials. We furthermore optimized the amount of USPIO incorporated into the scaffolds, correlated the amount of entrapped USPIO with MR signal intensity, showed that the labeled scaffolds are highly biocompatible, demonstrated that scaffold degradation can be visualized using MRI and provided initial proof-of-principle for the in vivo visualization of the scaffolds. Consequently, USPIO-labeled scaffold materials seem to be highly suitable for image-guided tissue engineering applications.

10.
J Control Release ; 365: 358-368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016488

RESUMO

Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.


Assuntos
Quimiocina CCL2 , Neoplasias , Camundongos , Animais , Quimiocina CCL2/farmacologia , Ligantes , Nanomedicina , Neoplasias/patologia , Macrófagos , Linhagem Celular Tumoral
11.
Cell Death Discov ; 10(1): 94, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388533

RESUMO

The molecular mechanisms underlying the transition from nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) are incompletely understood. During the development of NAFLD, Perilipin 5 (PLIN5) can regulate lipid metabolism by suppressing lipolysis and preventing lipotoxicity. Other reports suggest that the lack of PLIN5 decreases hepatic injury, indicating a protective role in NAFLD pathology. To better understand the role of PLIN5 in liver disease, we established mouse models of NAFLD and NAFLD-induced HCC, in which wild-type and Plin5 null mice were exposed to a single dose of acetone or 7,12-dimethylbenz[a]anthracene (DMBA) in acetone, followed by a 30-week high-fat diet supplemented with glucose/fructose. In the NAFLD model, RNA-seq revealed significant changes in genes related to lipid metabolism and immune response. At the intermediate level, pathways such as AMP-activated protein kinase (AMPK), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and protein kinase B (AKT) were blunted in Plin5-deficient mice (Plin5-/-) compared to wild-type mice (WT). In the NAFLD-HCC model, only WT mice developed liver tumors, while Plin5-/- mice were resistant to tumorigenesis. Furthermore, only 32 differentially expressed genes associated with NALFD progession were identified in Plin5 null mice. The markers of mitochondrial function and immune response, such as the peroxisome proliferator-activated receptor-γ, coactivator 1-α (PGC-1α) and phosphorylated STAT3, were decreased. Lipidomic analysis revealed differential levels of some sphingomyelins between WT and Plin5-/- mice. Interestingly, these changes were not detected in the HCC model, indicating a possible shift in the metabolism of sphingomelins during carcinogenesis.

12.
J Am Soc Mass Spectrom ; 35(6): 1184-1196, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679918

RESUMO

Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (µCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. µCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with µCT.


Assuntos
Citrulina , Consolidação da Fratura , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Microtomografia por Raio-X , Animais , Consolidação da Fratura/efeitos dos fármacos , Ratos , Citrulina/análise , Citrulina/metabolismo , Citrulina/farmacologia , Espectrometria de Massas em Tandem/métodos , Microtomografia por Raio-X/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Suplementos Nutricionais/análise , Modelos Animais de Doenças , Masculino , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/metabolismo , Cromatografia Líquida/métodos , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/farmacologia
13.
JHEP Rep ; 6(3): 100987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328439

RESUMO

Background & Aims: Changes in gut microbiota in metabolic dysfunction-associated steatotic liver disease (MASLD) are important drivers of disease progression towards fibrosis. Therefore, reversing microbial alterations could ameliorate MASLD progression. Oat beta-glucan, a non-digestible polysaccharide, has shown promising therapeutic effects on hyperlipidemia associated with MASLD, but its impact on gut microbiota and most importantly MASLD-related fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping, including assessments of body composition, glucose tolerance, and lipid metabolism, as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of MASLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota were modulated using broad-spectrum antibiotic treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain or glucose intolerance and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened MASLD-related inflammation, which was associated with significantly reduced monocyte-derived macrophage infiltration and fibroinflammatory gene expression, as well as strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon broad-spectrum antibiotic treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of Toll-like receptor ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced MASLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing MASLD progression and should be assessed in clinical studies. Impact and Implications: Herein, we investigated the effect of oat beta-glucan on the gut-liver axis and fibrosis development in a mouse model of metabolic dysfunction-associated steatotic liver disease (MASLD). Beta-glucan significantly reduced inflammation and fibrosis in the liver, which was associated with favorable shifts in gut microbiota that protected against bacterial translocation and activation of fibroinflammatory pathways. Together, oat beta-glucan may be a cost-effective and well-tolerated approach to prevent MASLD progression and should be assessed in clinical studies.

14.
Neoplasia ; 46: 100945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976569

RESUMO

Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR , Carga Tumoral
15.
Neurogenetics ; 13(2): 169-79, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466687

RESUMO

Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder preferentially affecting the longest corticospinal axons. More than 40 HSP genetic loci have been identified, among them SPG10, an autosomal dominant HSP caused by point mutations in the neuronal kinesin heavy chain protein KIF5A. Constitutive KIF5A knockout (KIF5A( -/- )) mice die early after birth. In these mice, lungs were unexpanded, and cell bodies of lower motor neurons in the spinal cord swollen, but the pathomechanism remained unclear. To gain insights into the pathophysiology, we characterized survival, outgrowth, and function in primary motor and sensory neuron cultures from KIF5A( -/- ) mice. Absence of KIF5A reduced survival in motor neurons, but not in sensory neurons. Outgrowth of axons and dendrites was remarkably diminished in KIF5A( -/- ) motor neurons. The number of axonal branches was reduced, whereas the number of dendrites was not altered. In KIF5A( -/- ) sensory neurons, neurite outgrowth was decreased but the number of neurites remained unchanged. In motor neurons maximum and average velocity of mitochondrial transport was reduced both in anterograde and retrograde direction. Our results point out a role of KIF5A in process outgrowth and axonal transport of mitochondria, affecting motor neurons more severely than sensory neurons. This gives pathophysiological insights into KIF5A associated HSP, and matches the clinical findings of predominant degeneration of the longest axons of the corticospinal tract.


Assuntos
Transporte Axonal/genética , Cinesinas/metabolismo , Paraplegia Espástica Hereditária/genética , Animais , Axônios/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Cinesinas/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Paraplegia Espástica Hereditária/metabolismo
17.
J Endocrinol ; 251(1): 41-52, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34265742

RESUMO

The leptin system plays a crucial role in the regulation of appetite and energy homeostasis in vertebrates. While the phenotype of morbid obesity due to leptin (Lep) or leptin receptor (LEPR) loss of function is well established in mammals, evidence in fish is controversial, questioning the role of leptin as the vertebrate adipostat. Here we report on three (Lepr) loss of function (LOF) and one leptin loss of function alleles in zebrafish. In order to demonstrate that the Lepr LOF alleles cannot transduce a leptin signal, we measured socs3a transcription after i.p. leptin which is abolished by Lepr LOF. None of the Lepr/Lepa LOF alleles leads to obesity/a body growth phenotype. We explore possible reasons leading to the difference in published results and find that even slight changes in background genetics such as inbreeding siblings and cousins can lead to significant variance in growth.


Assuntos
Leptina/fisiologia , Obesidade/genética , Receptores para Leptina/fisiologia , Peixe-Zebra/genética , Adiposidade , Animais , Feminino , Mutação com Perda de Função , Masculino , Aumento de Peso
18.
Biomaterials ; 266: 120432, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069116

RESUMO

Gastrointestinal (GI) cancers are among the most lethal malignancies. The treatment of advanced-stage GI cancer involves standard chemotherapeutic drugs, such as docetaxel, as well as targeted therapeutics and immunomodulatory agents, all of which are only moderately effective. We here show that Π electron-stabilized polymeric micelles based on PEG-b-p(HPMAm-Bz) can be loaded highly efficiently with docetaxel (loading capacity up to 23 wt%) and potentiate chemotherapy responses in multiple advanced-stage GI cancer mouse models. Complete cures and full tumor regression were achieved upon intravenously administering micellar docetaxel in subcutaneous gastric cancer cell line-derived xenografts (CDX), as well as in CDX models with intraperitoneal and lung metastases. Nanoformulated docetaxel also outperformed conventional docetaxel in a patient-derived xenograft (PDX) model, doubling the extent of tumor growth inhibition. Furthermore, micellar docetaxel modulated the tumor immune microenvironment in CDX and PDX tumors, increasing the ratio between M1-and M2-like macrophages, and toxicologically, it was found to be very well-tolerated. These findings demonstrate that Π electron-stabilized polymeric micelles loaded with docetaxel hold significant potential for the treatment of advanced-stage GI cancers.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos , Elétrons , Neoplasias Gastrointestinais/tratamento farmacológico , Camundongos , Micelas , Polietilenoglicóis , Microambiente Tumoral
19.
Invest Radiol ; 55(8): 507-514, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32224718

RESUMO

OBJECTIVES: Magnetic resonance imaging (MRI) is considered to be well tolerated by laboratory animals. However, no systematic study has been performed yet, proving this assumption. Therefore, the aim of this study was to investigate the possible effects of longitudinal native and contrast-enhanced (CE) 1-T and 7-T MRI examinations on mouse welfare as well as 4T1 breast cancers progression and therapy response. MATERIAL AND METHODS: Forty-seven healthy and 72 breast cancer-bearing mice (4T1) were investigated. One-Tesla (ICON) and 7-T (Biospec) MRI measurements were performed thrice per week under isoflurane anesthesia in healthy BALB/c mice for 4 weeks and 3 times within 2 weeks in tumor-bearing animals. Animal welfare was examined by an observational score sheet, rotarod performance, heart rate measurements, and assessment of fecal corticosterone metabolites. Furthermore, we investigated whether CE-MRI influences the study outcome. Therefore, hemograms and organ weights were obtained, and 4T1 tumor growth, perfusion, immune cell infiltration, as well as response to the multikinase inhibitor regorafenib were investigated. Statistical comparisons between groups were performed using analysis of variance and Tukey or Bonferroni post hoc tests. RESULTS: Mice showed no alterations in the observational score sheet rating, rotarod performance, heart rate, and fecal corticosterone metabolites (P > 0.05) after repeated MRI at both field strengths. However, spleen weights were reduced in all healthy mouse groups that received isoflurane anesthesia (P < 0.001) including the groups investigated by 1-T and 7-T MRI (P = 0.02). Neither tumor progression nor response to the regorafenib treatment was affected by isoflurane anesthesia or CE-MRI monitoring. Furthermore, immunohistological tumor analysis did not indicate an effect of isoflurane and MRI on macrophage infiltration of tumors, perfusion of tumor vessels, and apoptotic cell rate (P > 0.05). CONCLUSIONS: Repeated MRI did not influence the welfare of mice and did not affect tumor growth and therapy response of 4T1 tumors. However, systemic immunological effects of isoflurane anesthesia need to be considered to prevent potential bias.


Assuntos
Bem-Estar do Animal , Imageamento por Ressonância Magnética , Animais , Corticosterona/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C
20.
J Control Release ; 328: 805-816, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010332

RESUMO

Core-crosslinked polymeric micelles (CCPM) based on PEG-b-pHPMA-lactate are clinically evaluated for the treatment of cancer. We macroscopically and microscopically investigated the biodistribution and target site accumulation of CCPM. To this end, fluorophore-labeled CCPM were intravenously injected in mice bearing 4T1 triple-negative breast cancer (TNBC) tumors, and their localization at the whole-body, tissue and cellular level was analyzed using multimodal and multiscale optical imaging. At the organism level, we performed non-invasive 3D micro-computed tomography-fluorescence tomography (µCT-FLT) and 2D fluorescence reflectance imaging (FRI). At the tissue and cellular level, we performed extensive immunohistochemistry, focusing primarily on cancer, endothelial and phagocytic immune cells. The CCPM achieved highly efficient tumor targeting in the 4T1 TNBC mouse model (18.6 %ID/g), with values twice as high as those in liver and spleen (9.1 and 8.9 %ID/g, respectively). Microscopic analysis of tissue slices revealed that at 48 h post injection, 67% of intratumoral CCPM were localized extracellularly. Phenotypic analyses on the remaining 33% of intracellularly accumulated CCPM showed that predominantly F4/80+ phagocytes had taken up the nanocarrier formulation. Similar uptake patterns were observed for liver and spleen. The propensity of CCPM to primarily accumulate in the extracellular space in tumors suggests that the anticancer efficacy of the formulation mainly results from sustained release of the chemotherapeutic payload in the tumor microenvironment. In addition, their high uptake by phagocytic immune cells encourages potential use for immunomodulatory anticancer therapy. Altogether, the beneficial biodistribution, efficient tumor targeting and prominent engagement of PEG-b-pHPMA-lactate-based CCPM with key cell populations underline the clinical versatility of this clinical-stage nanocarrier formulation.


Assuntos
Micelas , Polímeros , Animais , Linhagem Celular Tumoral , Camundongos , Imagem Óptica , Distribuição Tecidual , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA