Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(12): e114091, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37051729

RESUMO

Cyclic di-GMP signaling regulates sessile-to-motile lifestyle transition and associated physiological and metabolic features in bacteria. The presence of potential cyclic di-GMP turnover proteins in deepest branching bacteria indicates that cyclic di-GMP is an ancient signaling molecule. In this issue of The EMBO Journal, Cai et al (2023) describe light-induced activation of a thiosulfate oxidation pathway in the deep-sea cold-seep bacterium Qipengyuania flava, thus coupling cyclic di-GMP with the regulation of the global abiotic sulfur cycle.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais , Proteínas de Escherichia coli/metabolismo , Bactérias/metabolismo , Comunicação Celular , Regulação Bacteriana da Expressão Gênica , Biofilmes
2.
Biomacromolecules ; 23(11): 4841-4850, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36327974

RESUMO

The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(l-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75-80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance.


Assuntos
Poliésteres , Polímeros , Endopeptidase K/metabolismo , Poliésteres/química , Polímeros/química , Temperatura
3.
Biophys J ; 120(5): 964-974, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545103

RESUMO

In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 µm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.


Assuntos
Fitocromo , Bactérias , Proteínas de Bactérias , Luz
4.
Nat Chem Biol ; 15(11): 1085-1092, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451761

RESUMO

Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.


Assuntos
Luz , Biossíntese de Proteínas , RNA/metabolismo , Proteínas de Bactérias/metabolismo , Ligação Proteica , Transdução de Sinais
5.
Chem Rev ; 118(21): 10659-10709, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29984995

RESUMO

Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.


Assuntos
Células Fotorreceptoras/metabolismo , Animais , Apoptose , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Luz , Modelos Moleculares , Optogenética , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Conformação Proteica , Estabilidade Proteica , Recombinação Genética , Transdução de Sinais
6.
Biol Chem ; 400(3): 429-441, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30763033

RESUMO

Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3', 5'-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.


Assuntos
Adenilil Ciclases/metabolismo , Engenharia de Proteínas , Adenilil Ciclases/genética , Adenilil Ciclases/isolamento & purificação , Beggiatoa/enzimologia , Cromatografia Líquida de Alta Pressão , Processos Fotoquímicos , Transdução de Sinais
7.
Int J Mol Sci ; 20(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083552

RESUMO

Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5-7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.


Assuntos
Aminoacil-tRNA Sintetases/genética , Biologia Computacional/métodos , Biblioteca Gênica , Luz , Tirosina/metabolismo , Domínio Catalítico , Estabilidade Enzimática , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Temperatura
8.
Chembiochem ; 19(12): 1296-1304, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29442428

RESUMO

Sensory photoreceptors evoke numerous adaptive responses in nature and serve as light-gated actuators in optogenetics to enable the spatiotemporally precise, reversible, and noninvasive control of cellular events. The output of optogenetic circuits can often be dialed in by varying illumination quality, quantity, and duration. A programmable matrix of light-emitting diodes has been devised to efficiently probe the response of optogenetic systems to intermittently applied light of varying intensity and pulse frequency. Circuits for light-regulated gene expression markedly differed in their responses to pulsed illumination of a single color which sufficed for their sequential triggering. In addition to quantity and quality, the pulse frequency of intermittent light hence provides a further input variable for output control in optogenetics and photobiology. Pulsed illumination schemes allow the reduction of overall light dose and facilitate the multiplexing of several lightdependent actuators and reporters.


Assuntos
Iluminação/métodos , Optogenética/métodos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação da Expressão Gênica/efeitos da radiação , Histidina Quinase/genética , Cinética , Luz , Fotorreceptores Microbianos/genética
9.
Nucleic Acids Res ; 44(20): 10003-10014, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27744350

RESUMO

Sensory photoreceptors have enabled non-invasive and spatiotemporal control of numerous biological processes. Photoreceptor engineering has expanded the repertoire beyond natural receptors, but to date no generally applicable strategy exists towards constructing light-regulated protein actuators of arbitrary function. We hence explored whether the homodimeric Rhodobacter sphaeroides light-oxygen-voltage (LOV) domain (RsLOV) that dissociates upon blue-light exposure can confer light sensitivity onto effector proteins, via a mechanism of light-induced functional site release. We chose the RNA-guided programmable DNA endonuclease Cas9 as proof-of-principle effector, and constructed a comprehensive library of RsLOV inserted throughout the Cas9 protein. Screening with a high-throughput assay based on transcriptional repression in Escherichia coli yielded paRC9, a moderately light-activatable variant. As domain insertion can lead to protein destabilization, we also screened the library for temperature-sensitive variants and isolated tsRC9, a variant with robust activity at 29°C but negligible activity at 37°C. Biochemical assays confirmed temperature-dependent DNA cleavage and binding for tsRC9, but indicated that the light sensitivity of paRC9 is specific to the cellular setting. Using tsRC9, the first temperature-sensitive Cas9 variant, we demonstrate temperature-dependent transcriptional control over ectopic and endogenous genetic loci. Taken together, RsLOV can confer light sensitivity onto an unrelated effector; unexpectedly, the same LOV domain can also impart strong temperature sensitivity.


Assuntos
Endonucleases/genética , Endonucleases/metabolismo , Variação Genética , Engenharia de Proteínas , Rhodobacter sphaeroides/enzimologia , Rhodobacter sphaeroides/genética , Sequência de Aminoácidos , Clivagem do DNA/efeitos da radiação , Endonucleases/química , Endonucleases/isolamento & purificação , Citometria de Fluxo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Luz , Modelos Moleculares , Mutação , Conformação Proteica , Temperatura
10.
Chembiochem ; 18(18): 1819-1823, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650092

RESUMO

Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives.


Assuntos
Bivalves/metabolismo , Código Genético/genética , Proteínas/metabolismo , Adesivos/efeitos da radiação , Aminoacil-tRNA Sintetases/metabolismo , Animais , Materiais Biomiméticos/metabolismo , Bivalves/genética , Di-Hidroxifenilalanina/metabolismo , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Mutagênese Sítio-Dirigida , Proteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Raios Ultravioleta
11.
Proc Natl Acad Sci U S A ; 111(24): 8803-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889611

RESUMO

Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.


Assuntos
AMP Cíclico/química , GMP Cíclico/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Diester Fosfórico Hidrolases/química , Engenharia de Proteínas , Sítio Alostérico , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Escherichia coli/metabolismo , Genes Reporter , Humanos , Hidrólise , Cinética , Luz , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Synechocystis/metabolismo , Temperatura , Peixe-Zebra
12.
Photochem Photobiol Sci ; 14(2): 270-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25373866

RESUMO

Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm(-2); intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.


Assuntos
Automação Laboratorial/instrumentação , Dispositivos Ópticos , Fotobiologia/instrumentação , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Beggiatoa , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Luz , Mutação , Processos Fotoquímicos , Fitocromo B/química , Synechocystis , Temperatura
13.
J Biol Chem ; 288(41): 29345-55, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24003219

RESUMO

Modular signal receptors empower organisms to process environmental stimuli into adequate physiological responses. At the molecular level, a sensor module receives signals and processes the inherent information into changes of biological activity of an effector module. To better understand the molecular bases underpinning these processes, we analyzed signal reception and processing in the dimeric light-oxygen-voltage (LOV) blue light receptor YF1 that serves as a paradigm for the widespread Per-ARNT-Sim (PAS) signal receptors. Random mutagenesis identifies numerous YF1 variants in which biological activity is retained but where light regulation is abolished or inverted. One group of variants carries mutations within the LOV photosensor that disrupt proper coupling of the flavin-nucleotide chromophore to the protein scaffold. Another larger group bears mutations that cluster at the dyad interface and disrupt signal transmission to two coaxial coiled-coils that connect to the effector. Sequence covariation implies wide conservation of structural and mechanistic motifs, as also borne out by comparison to several PAS domains in which mutations leading to disruption of signal transduction consistently map to confined regions broadly equivalent to those identified in YF1. Not only do these data provide insight into general mechanisms of signal transduction, but also they establish concrete means for customized reprogramming of signal receptors.


Assuntos
Proteínas de Bactérias/genética , Mutagênese , Proteínas Quinases/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Análise de Variância , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Histidina Quinase , Luz , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
15.
RSC Chem Biol ; 5(6): 530-543, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846079

RESUMO

Light-dependent adaptations of organismal physiology, development, and behavior abound in nature and depend on sensory photoreceptors. As one class, light-oxygen-voltage (LOV) photoreceptors harness flavin-nucleotide chromophores to sense blue light. Photon absorption drives the LOV receptor to its signaling state, characterized by a metastable thioadduct between the flavin and a conserved cysteine residue. With this cysteine absent, LOV receptors instead undergo photoreduction to the flavin semiquinone which however can still elicit downstream physiological responses. Irrespective of the cysteine presence, the LOV photochemical response thus entails a formal reduction of the flavin. Against this backdrop, we here investigate the reduction midpoint potential E 0 in the paradigmatic LOV2 domain from Avena sativa phototropin 1 (AsLOV2), and how it can be deliberately varied. Replacements of residues at different sites near the flavin by methionine consistently increase E 0 from its value of around -280 mV by up to 40 mV. Moreover, methionine introduction invariably impairs photoactivation efficiency and thus renders the resultant AsLOV2 variants less light-sensitive. Although individual methionine substitutions also affect the stability of the signaling state and downstream allosteric responses, no clear-cut correlation with the redox properties emerges. With a reduction midpoint potential near -280 mV, AsLOV2 and, by inference, other LOV receptors may be partially reduced inside cells which directly affects their light responsiveness. The targeted modification of the chromophore environment, as presently demonstrated, may mitigate this effect and enables the design of LOV receptors with stratified redox sensitivities.

16.
Nat Commun ; 15(1): 4876, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858359

RESUMO

Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.


Assuntos
Proteínas de Bactérias , Histidina Quinase , Monoéster Fosfórico Hidrolases , Transdução de Sinais , Histidina Quinase/metabolismo , Histidina Quinase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Escherichia coli/genética
17.
Methods Mol Biol ; 2760: 463-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468104

RESUMO

By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.


Assuntos
Bactérias , Luz Azul , Optogenética/métodos , Expressão Gênica , Luz
18.
Adv Sci (Weinh) ; 11(12): e2304519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227373

RESUMO

The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.


Assuntos
RNA Catalítico , RNA , Animais , Motivos de Nucleotídeos , RNA/genética , RNA Catalítico/química , RNA Catalítico/genética , RNA Catalítico/metabolismo , Bactérias/metabolismo , Expressão Gênica , Mamíferos/metabolismo
19.
J Mol Biol ; 436(5): 168257, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657609

RESUMO

Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.


Assuntos
Adenilil Ciclases , AMP Cíclico , Deinococcus , Fotorreceptores Microbianos , Fitocromo , Proteínas Recombinantes de Fusão , Animais , Adenilil Ciclases/química , Adenilil Ciclases/genética , AMP Cíclico/química , Luz , Optogenética , Transdução de Sinais , Engenharia de Proteínas , Fitocromo/química , Fitocromo/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética
20.
Photochem Photobiol Sci ; 12(10): 1855-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900620

RESUMO

A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model. We show that our data are in agreement with the crystal structure of an engineered LOV-domain protein, YF1, that shows the N-terminus of the protein to be helical and to fold back in between the ß-sheets of the two LOV domains, and argue for an identical arrangement in YtvA. While we could not detect any structural changes upon blue-light activation of the protein, this structural model now forms an ideal basis for identifying residues as targets for further spin labelling studies to detect potential conformational changes upon irradiation of the protein.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Luz , Modelos Moleculares , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA