Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35182765

RESUMO

Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.


Assuntos
Tardígrados , Transcriptoma , Animais , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , RNA-Seq , Tardígrados/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-35640792

RESUMO

Subzero temperatures are among the most significant factors defining the distribution of organisms, yet, certain taxa have evolved to overcome this barrier. The microscopic tardigrades are among the most freeze-tolerant animals, with selected species reported to survive milli-Kelvin temperatures. Here, we estimate survival of fully hydrated eutardigrades of the species Ramazzottius varieornatus following exposures to -20 °C and  -80 °C as well as -196 °C with or without initial cooling to -80 °C. The tardigrades easily survive these temperatures, yet with a significant decrease in viability following rapid cooling by direct exposure to -196 °C. Hence, post-freeze recovery of R. varieornatus seems to rely on cooling rate and thus controlled ice formation. Cryophilic organisms are renowned for having cold-active enzymes that secure appropriate reaction rates at low temperatures. Hence, extreme freeze-tolerance in R. varieornatus could potentially involve syntheses of cryoprotectants and de novo transcription. We therefore generated a reference transcriptome for this cryophilic R. varieornatus population and explored for differential gene expression patterns following cooling to -80 °C as compared to active 5 °C controls. Specifically, we tested for fast transcription potentially occurring within 25 min of cooling from room temperature to a supercooling point of ca. -20 °C, at which the tardigrades presumably freeze and enter into the ametabolic state of cryobiosis. Our analyses revealed no evidence for differential gene expression. We, therefore, conclude that extreme freeze-tolerance in R. varieornatus relies on controlled extracellular freezing with any freeze-tolerance related genes being constitutively expressed.


Assuntos
Gelo , Tardígrados , Animais , Temperatura Baixa , Congelamento , Tardígrados/genética , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-33373690

RESUMO

Life is set within a narrow frame of physicochemical factors, yet, some species have adapted to conditions far beyond these constraints. Nature appears to have evolved two principal strategies for living organisms to cope with hostile conditions. One way is to remain active, retaining metabolism through adaptations that enable the organism to match the physiological requirements of environmental change. The other is to enter a state of dormancy with metabolic suppression. One form of metabolic suppression, known as cryptobiosis, is a widespread state across life kingdoms, in which metabolism comes to a reversible standstill. Among animals, nematodes, rotifers and tardigrades, comprise species that have the ability to enter cryptobiosis at all stages of their life cycle. Tardigrades are microscopic cosmopolitan metazoans found in permanent and temporal aquatic environments. They are renowned for their ability to tolerate extreme stress and are particularly resistant after having entered a cryptobiotic state known as a "tun". As new molecular tools allow for a more detailed investigation into their enigmatic adaptations, tardigrades are gaining increasing attention. In this graphical review, we provide an outline of survival strategies found among tardigrades and we summarize current knowledge of the adaptive mechanisms that underlie their unique tolerance to extreme or changing environments.


Assuntos
Adaptação Fisiológica , Estresse Fisiológico , Tardígrados/fisiologia , Animais , Evolução Biológica , Diapausa , Meio Ambiente , Estágios do Ciclo de Vida , Modelos Biológicos
4.
BMC Evol Biol ; 19(1): 206, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694520

RESUMO

BACKGROUND: Tardigrada is a group of microscopic invertebrates distributed worldwide in permanent and temporal aquatic habitats. Famous for their extreme stress tolerance, tardigrades are also of interest due to their close relationship with Arthropoda and Cycloneuralia. Despite recent efforts in analyzing the musculature of a number of tardigrade species, data on the class Heterotardigrada remain scarce. Aiming to expand the current morphological framework, and to promote the use of muscular body plans in elucidating tardigrade phylogeny, the myoanatomy of two heterotardigrades, Actinarctus doryphorus and Echiniscoides sigismundi, was analyzed by cytochemistry, scanning electron and confocal laser scanning microscopy and 3D imaging. We discuss our findings with reference to other tardigrades and internal phylogenetic relationships of the phylum. RESULTS: We focus our analyses on the somatic musculature, which in tardigrades includes muscle groups spanning dorsal, ventral, and lateral body regions, with the legs being musculated by fibers belonging to all three groups. A pronounced reduction of the trunk musculature is seen in the dorsoventrally compressed A. doryphorus, a species that generally has fewer cuticle attachment sites as compared to E. sigismundi and members of the class Eutardigrada. Interestingly, F-actin positive signals were found in the head appendages of A. doryphorus. Our analyses further indicate that cross-striation is a feature common to the somatic muscles of heterotardigrades and that E. sigismundi-as previously proposed for other echiniscoidean heterotardigrades-has relatively thick somatic muscle fibers. CONCLUSIONS: We provide new insights into the myoanatomical differences that characterize distinct evolutionary lineages within Tardigrada, highlighting characters that potentially can be informative in future phylogenetic analyses. We focus our current analyses on the ventral trunk musculature. Our observations suggest that seven paired ventromedian attachment sites anchoring a large number of muscles can be regarded as part of the ground pattern of Tardigrada and that fusion and reduction of cuticular attachment sites is a derived condition. Specifically, the pattern of these sites differs in particular details between tardigrade taxa. In the future, a deeper understanding of the tardigrade myoanatomical ground pattern will require more investigations in order to include all major tardigrade lineages.


Assuntos
Tardígrados/classificação , Tardígrados/genética , Animais , Evolução Biológica , Microscopia Confocal , Filogenia , Tardígrados/anatomia & histologia , Tardígrados/ultraestrutura
5.
BMC Genomics ; 20(1): 607, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340759

RESUMO

BACKGROUND: Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. RESULTS: E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The "tardigrade unique proteins" (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. CONCLUSIONS: Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages.


Assuntos
Tardígrados/classificação , Tardígrados/fisiologia , Transcriptoma , Animais , Evolução Biológica , Reparo do DNA , Família Multigênica , RNA-Seq , Estresse Fisiológico
8.
Zootaxa ; (3802): 401-43, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24871022

RESUMO

Marine caves are known to support a rich macrofauna; however, few studies have focused on meiofauna. Marine cave meiofaunal tardigrades have been reported from Japan and the Mediterranean Sea and a preliminary list of species including a redescription of Actinarctus neretinus Grimaldi de Zio, D'Addabbo Gallo, Morone De Lucia, Vaccarella and Grimaldi, 1982 was reported from Fish Rock Cave and Jim's Cave on the coast of Australia. This study is the fourth in a series describing the unique meiofauna in two Australian submarine caves located off the coast of New South Wales, describing nine new species.        Only 67 tardigrades were collected from the two caves, yet these contained a high diversity of at least 16 different species which are quite different in the two caves. The fauna includes nine arthrotardigrade genera: Actinarctus, Batillipes, Dipodarctus, Halechiniscus, Raiarctus, Styraconyx, Tanarctus, Tholoarctus, and Wingstrandarctus. This fauna is different from that reported for the high energy beaches along the East Coast of Australia.        We describe nine new species comprising a single batillipedid and eight halechiniscids: Batillipes solitarius nov. sp., Dipodarctus australiensis nov. sp., Dipodarctus susannae nov. sp., Raiarctus jesperi nov. sp., Raiarctus katrinae nov. sp., Tanarctus hirsutospinosus nov. sp., Tholoarctus oleseni nov. sp., Wingstrandarctus stinae nov. sp. and Wingstrandarctus unsculptus nov. sp.


Assuntos
Biota , Tardígrados/anatomia & histologia , Tardígrados/classificação , Animais , Austrália , Cavernas , Feminino , Larva/anatomia & histologia , Larva/classificação , Larva/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Tardígrados/crescimento & desenvolvimento , Tardígrados/ultraestrutura
9.
J Exp Biol ; 216(Pt 7): 1235-43, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239888

RESUMO

Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.


Assuntos
Adaptação Biológica/fisiologia , Íons/metabolismo , Estresse Fisiológico/fisiologia , Tardígrados/química , Equilíbrio Hidroeletrolítico/fisiologia , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Ecossistema , Osmometria , Especificidade da Espécie
10.
Front Physiol ; 14: 1274522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929212

RESUMO

Tardigrades are renowned for their ability to enter the extremotolerant state of latent life known as cryptobiosis. While it is widely accepted that cryptobiosis can be induced by freezing (cryobiosis) and by desiccation (anhydrobiosis), the latter involving formation of a so-called tun, the exact mechanisms underlying the state-as well as the significance of other cryptobiosis inducing factors-remain ambiguous. Here, we focus on osmotic and chemical stress tolerance in the marine tidal tardigrade Echiniscoides sigismundi. We show that E. sigismundi enters the tun state following exposure to saturated seawater and upon exposure to locality seawater containing the mitochondrial uncoupler DNP. The latter experiments provide evidence of osmobiosis and chemobiosis, i.e., cryptobiosis induced by high levels of osmolytes and toxicants, respectively. A small decrease in survival was observed following simultaneous exposure to DNP and saturated seawater indicating that the tardigrades may not be entirely ametabolic while in the osmobiotic tun. The tardigrades easily handle exposure to ultrapure water, but hypo-osmotic shock impairs tun formation and when exposed to ultrapure water the tardigrades do not tolerate DNP, indicating that tolerance towards dilute solutions involves energy-consuming processes. We discuss our data in relation to earlier and more contemporary studies on cryptobiosis and we argue that osmobiosis should be defined as a state of cryptobiosis induced by high external osmotic pressure. Our investigation supports the hypothesis that the mechanisms underlying osmobiosis and anhydrobiosis are overlapping and that osmobiosis likely represents the evolutionary forerunner of cryptobiosis forms that involve body water deprivation.

11.
Zootaxa ; 5284(2): 351-363, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37518733

RESUMO

Little is still known about the diversity and evolution of marine arthrotardigrades, as they are generally difficult to sample, resulting in a limited amount of molecular data for barcoding and phylogenetic studies. With the current study, we provide the first investigation into COI haplotype diversity in a marine tanarctid and at the same time readdress arthrotardigrade phylogeny. Specifically, we provide COI mtDNA, 18S and 28S rDNA sequences from a population of Actinarctus doryphorus (Tanarctidae) sampled off the coast of Roscoff, France and further provide new 18S sequences from two marine echiniscoidids. A. doryphorus COI sequences confirmed the presence of a single species and further revealed five haplotypes shared among nine sequenced individuals. Our 18S and 28S rDNA datasets were individually and combined analysed with Bayesian inference and Maximum Likelihood. Actinarctus doryphorus was placed together with Tanarctus sequences within a maximally supported Tanarctidae, confirming previous interpretations that the clade is distinct from Halechiniscidae. Although several studies in recent decades have concluded that the marine arthrotardigrades are paraphyletic, recent studies have argued that the clade may not be paraphyletic. Our phylogenetic analyses consistently inferred Arthrotardigrada as paraphyletic, as the clade includes the monophyletic Echiniscoidea. Accordingly, we propose that it is time to suppress the order Arthrotardigrada as it clearly does not reflect tardigrade phylogeny.

13.
J Exp Biol ; 215(Pt 3): 497-507, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22246258

RESUMO

We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 µmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.


Assuntos
Transporte Biológico Ativo/fisiologia , Gafanhotos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tardígrados/metabolismo , 2,4-Dinitrofenol/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte de Íons , Macrolídeos/farmacologia , Túbulos de Malpighi/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenolsulfonaftaleína/análogos & derivados , Fenolsulfonaftaleína/metabolismo , Probenecid/farmacologia , Ácido p-Aminoipúrico/farmacologia
14.
PLoS One ; 16(5): e0250403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951070

RESUMO

Loricifera is a phylum of microscopic animals that inhabit marine environments worldwide. Named after their conspicuous and protective lorica, the phylum was first described from Roscoff (France) in 1983 and, hitherto, it contains only 40 species. Based on data collected from Roscoff during the past four decades, we here describe two new species of Nanaloricus, namely Nanaloricus valdemari sp. nov. and Nanaloricus mathildeae sp. nov., as well as a new genus and species, Scutiloricus hugoi gen. et sp. nov. Adults of N. valdemari sp. nov. are distinguished by a pair of unique cuticular ridges, here referred to as longitudinal stripes, spanning laterally along the anterior two thirds of the dorsal lorical plate. N. mathildeae sp. nov. is characterized by strong sexual dimorphism. Specifically, the branches composing the multiform male clavoscalids are much broader as compared to other Nanaloricus species. The two new Nanaloricus species are both characterized by unique sensory organs associated with the double trichoscalids. The size and exact position of these organs differ between the two species. Adults of Scutiloricus hugoi gen. et sp. nov. are characterized by, among other features, a square lorica composed of six cuticular plates with a total of 14 anterior spikes, of which 12 have transverse cuticular ridges and thus appear fenestrated; laterodorsal flosculi arranged linearly; a posterior lorical region characterized by an anal field with a small anal cone flanked by a pair of spurs. Notably, mature females are characterized by a pair of seminal receptacles, a character not previously reported in Loricifera. We discuss the new findings and compare N. valdemari sp. nov. and N. mathildeae sp.nov. with other species assigned to genus Nanaloricus. The distinguishing features of Scutiloricus hugoi gen. et sp. nov. are discussed from a comparative perspective with the other genera of family Nanaloricidae.


Assuntos
Distribuição Animal , Animais , Tamanho Corporal , Feminino , França , Masculino
15.
BMC Dev Biol ; 10: 56, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20507566

RESUMO

BACKGROUND: Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model. RESULTS: We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na+ and K+ conductances, as well as a large K+ conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na+/K+-ATPase in the basolateral labyrinth. CONCLUSIONS: We propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na+/K+ pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations.


Assuntos
Ambystoma mexicanum/embriologia , Ureter/embriologia , Animais , Evolução Biológica , Transporte de Íons , Ureter/citologia
16.
Mol Phylogenet Evol ; 54(3): 1006-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19822216

RESUMO

Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades.


Assuntos
Evolução Molecular , Invertebrados/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Variação Genética , Invertebrados/classificação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico 18S/genética , RNA Ribossômico 28S , Análise de Sequência de DNA
17.
Commun Integr Biol ; 13(1): 140-146, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33014266

RESUMO

The recent discovery of an upper limit in the tolerance of an extremotolerant tardigrade to high temperatures is astounding. Although these microinvertebrates are able to endure severe environmental conditions, including desiccation, freezing and high levels of radiation, high temperatures seem to be an Achilles' heel for active tardigrades. Moreover, exposure-time appears to be a limiting factor for the heat stress tolerance of the otherwise highly resilient desiccated (anhydrobiotic) tardigrades. Indeed, the survival rate of desiccated tardigrades exposed to high temperatures for 24 hours is significantly lower than for exposures of only 1 hour. Here, we investigate the effect of 1 week of high temperature exposures on desiccated tardigrades with the aim of elucidating whether exposure-times longer than 24 hours decrease survival even further. From our analyses we estimate a significant decrease in the 50% mortality temperature from 63ºC to 56ºC for Ramazzottius varieornatus exposed to high temperatures in the desiccated tun state for 24 hours and 1 week, respectively. This negative correlation between exposure-time and tolerance to high temperatures probably results from the interference of intracellular temperature with the homeostasis of macromolecules. We hypothesize that high temperatures denature molecules that play a vital role in sustaining and protecting the anhydrobiotic state.

18.
Sci Rep ; 10(1): 94, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919388

RESUMO

Global warming is already having harmful effects on habitats worldwide and it is therefore important to gain an understanding of how rising temperatures may affect extant animals. Here, we investigate the tolerance to high temperatures of Ramazzottius varieornatus, a tardigrade frequently found in transient freshwater habitats. Using logistic modelling on activity we evaluate the effect of 24 hour temperature exposures on active tardigrades, with or without a short acclimation period, compared to exposures of desiccated tardigrades. We estimate that the 50% mortality temperature for non-acclimated active tardigrades is 37.1 °C, with a small but significant increase to 37.6 °C following acclimation. Desiccated specimens tolerate much higher temperatures, with an estimated 50% mortality temperature of 82.7 °C following 1 hour exposures, but with a significant decrease to 63.1 °C following 24 hour exposures. Our results show that metabolically active tardigrades are vulnerable to high temperatures, yet acclimatization could provide a tolerance increase. Desiccated specimens show a much higher resilience-exposure-time is, however, a limiting factor giving tardigrades a restricted window of high temperature tolerance. Tardigrades are renowned for their ability to tolerate extreme conditions, but their endurance towards high temperatures clearly has an upper limit-high temperatures thus seem to be their Achilles heel.


Assuntos
Aclimatação , Desidratação , Ecossistema , Temperatura Alta , Tardígrados/fisiologia , Termotolerância , Animais , Água Doce
19.
J Exp Biol ; 212(17): 2803-11, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19684214

RESUMO

Tardigrades exhibit a remarkable resilience against environmental extremes. In the present study, we investigate mechanisms of survival and physiological adaptations associated with sub-zero temperatures and severe osmotic stress in two commonly found cyclomorphic stages of the marine eutardigrade Halobiotus crispae. Our results show that only animals in the so-called pseudosimplex 1 stage are freeze tolerant. In pseudosimplex 1, as well as active-stage animals kept at a salinity of 20 ppt, ice formation proceeds rapidly at a crystallization temperature of around -20 degrees C, revealing extensive supercooling in both stages, while excluding the presence of physiologically relevant ice-nucleating agents. Experiments on osmotic stress tolerance show that the active stage tolerates the largest range of salinities. Changes in body volume and hemolymph osmolality of active-stage specimens (350-500 microm) were measured following salinity transfers from 20 ppt. Hemolymph osmolality at 20 ppt was approximately 950 mOsm kg(-1). Exposure to hypo-osmotic stress in 2 and 10 ppt caused (1) rapid swelling followed by a regulatory volume decrease, with body volume reaching control levels after 48 h and (2) decrease in hemolymph osmolality followed by a stabilization at significantly lower osmolalities. Exposure to hyperosmotic stress in 40 ppt caused (1) rapid volume reduction, followed by a regulatory increase, but with a new steady-state after 24 h below control values and (2) significant increase in hemolymph osmolality. At any investigated external salinity, active-stage H. crispae hyper-regulate, indicating a high water turnover and excretion of dilute urine. This is likely a general feature of eutardigrades.


Assuntos
Aclimatação , Invertebrados/fisiologia , Animais , Invertebrados/ultraestrutura , Microscopia Eletrônica de Varredura , Concentração Osmolar , Pressão Osmótica , Temperatura , Equilíbrio Hidroeletrolítico
20.
Sci Rep ; 8(1): 11495, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065347

RESUMO

It has recently been argued that the enigmatic tardigrades (water bears) will endure until the sun dies, surviving any astrophysical calamities in Earth's oceans. Yet, our knowledge of stress tolerance among marine tardigrade species is very limited and most investigations revolve around species living in moist habitats on land. Here, we investigate desiccation tolerance in the cosmopolitan marine tidal tardigrade, Echiniscoides sigismundi, providing the first thorough analysis on recovery upon desiccation from seawater. We test the influence on survival of desiccation surface, time spent desiccated (up to 1 year) and initial water volume. We propose analysis methods for survival estimates, which can be used as a future platform for evaluating and analysing recovery rates in organisms subjected to extreme stress. Our data reveal that marine tidal tardigrades tolerate extremely rapid and extended periods of desiccation from seawater supporting the argument that these animals are among the toughest organisms on Earth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA