RESUMO
Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação de DNA/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Tylenchoidea/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismoRESUMO
Although epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses was larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Several transposable elements located in different chromatin contexts and epigenetic-related genes were also affected. Correspondingly, mutant plants having loss or gain of repressive marks were, respectively, more tolerant and susceptible to turnip mosaic potyvirus, with a more efficient response against the ancestral isolate. In wild-type plants, both isolates induced similar levels of cytosine methylation changes, including in and around transposable elements and stress-related genes. Results collectively suggested that apart from RNA silencing and basal immunity systems, DNA methylation and histone modification pathways may also be required for mounting proper antiviral defenses and that the effectiveness of this type of regulation strongly depends on the degree of viral adaptation to the host.
Assuntos
Arabidopsis/virologia , Epigênese Genética , Aptidão Genética , Interações Hospedeiro-Patógeno/imunologia , Potyvirus/fisiologia , Adaptação Biológica , Arabidopsis/imunologia , Arabidopsis/metabolismo , Evolução Biológica , Metilação de DNA , TranscriptomaRESUMO
BACKGROUND: The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS: To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS: The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Assuntos
Proteínas de Plantas/genética , Tubérculos/genética , RNA de Plantas/metabolismo , Solanum tuberosum/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Inativação Gênica , Proteínas de Plantas/metabolismo , Tubérculos/anatomia & histologia , Tubérculos/citologia , Plantas Geneticamente Modificadas , Solanum tuberosum/citologiaRESUMO
The ATP-dependent SWR1 chromatin remodeling complex (SWR1-C) exchanges the histone H2A-H2B dimer with the H2A.Z-H2B dimer, producing variant nucleosomes. Arabidopsis thaliana SWR1-C contributes to the active transcription of many genes, but also to the repression of genes that respond to environmental and developmental stimuli. Unlike other higher eukaryotic H2A.Z deposition mutants (which are embryonically lethal), Arabidopsis SWR1-C component mutants, including arp6, survive and display a pleiotropic developmental phenotype. However, the molecular mechanisms of early flowering, leaf serration, and the production of extra petals in arp6 have not been completely elucidated. We report here that SWR1-C is required for miRNA-mediated developmental control via transcriptional regulation. In the mutants of the components of SWR1-C such as arp6, sef, and pie1, miR156 and miR164 levels are reduced at the transcriptional level, which results in the accumulation of target mRNAs and associated morphological changes. Sequencing of small RNA libraries confirmed that many miRNAs including miR156 decreased in arp6, though some miRNAs increased. The arp6 mutation suppresses the accumulation of not only unprocessed primary miRNAs, but also miRNA-regulated mRNAs in miRNA processing mutants, hyl1 and serrate, which suggests that arp6 has a transcriptional effect on both miRNAs and their targets. We consistently detected that the arp6 mutant exhibits increased nucleosome occupancy at the tested MIR gene promoters, indicating that SWR1-C contributes to transcriptional activation via nucleosome dynamics. Our findings suggest that SWR1-C contributes to the fine control of plant development by generating a balance between miRNAs and target mRNAs at the transcriptional level.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ciclopentanos/farmacologia , Meio Ambiente , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , MicroRNAs/genética , Mutação/genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genéticaRESUMO
Small RNAs, between 18nt and 30nt in length, are a diverse class of non-coding RNAs that mediate a range of cellular processes, from gene regulation to pathogen defense. They guide ribonucleoprotein complexes to their target nucleic acids by Watson-Crick base pairing. We report here that current techniques for small RNA detection and library generation are biased by formation of RNA duplexes. To address this problem, we established FDF-PAGE (fully-denaturing formaldehyde polyacrylamide gel electrophoresis) to prevent annealing of sRNAs to their complement. By applying FDF-PAGE, we provide evidence that both strands of viral small RNA are present in near equimolar ratios, indicating that the predominant precursor is a long double-stranded RNA. Comparing non-denaturing conditions to FDF-PAGE uncovered extensive sequestration of miRNAs in model organisms and allowed us to identify candidate small RNAs under the control of competing endogenous RNAs (ceRNAs). By revealing the full repertoire of small RNAs, we can begin to create a better understanding of small RNA mediated interactions.
Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Pequeno RNA não Traduzido/análise , Formaldeído , Genoma Viral , Desnaturação de Ácido Nucleico , Pequeno RNA não Traduzido/química , RNA Viral/análise , RNA Viral/genética , Análise de Sequência de RNA , Nicotiana/genéticaRESUMO
In previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of ß-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in D. melanogaster and C. elegans these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function. Here, we tested this hypothesis and provide the first biochemical evidence for a direct association between Nit1 and Fhit. In addition, size exclusion chromatography of purified recombinant human Nit1 showed a tetrameric structure as also previously observed for the NitFhit Rosetta Stone fusion protein Nft-1 in C. elegans. Finally, in line with the Rosetta Stone hypothesis we identified Hsp60 and Ubc9 as other common interaction partners of Nit1 and Fhit. The interaction of Nit1 and Fhit may affect their enzymatic activities as well as interaction with other binding partners.
Assuntos
Caenorhabditis elegans , Proteínas Supressoras de Tumor , Animais , Humanos , Hidrolases Anidrido Ácido/metabolismo , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Hidrolases , Proteínas RecombinantesRESUMO
BACKGROUND: Hybridization is associated with the activation of transposable elements and changes in the patterns of gene expression leading to phenotypic changes. However, the underlying mechanisms are not well understood. RESULTS: Here, we describe the changes to the gene expression in interspecific Solanum hybrids that are associated with small RNAs derived from endogenous (para)retroviruses (EPRV). There were prominent changes to sRNA profiles in these hybrids involving 22-nt species produced in the DCL2 biogenesis pathway, and the hybridization-induced changes to the gene expression were similar to those in a dcl2 mutant. CONCLUSIONS: These findings indicate that hybridization leads to activation of EPRV, perturbation of small RNA profiles, and, consequently, changes in the gene expression. Such hybridization-induced variation in the gene expression could increase the natural phenotypic variation in natural evolution or in breeding for agriculture.
Assuntos
Solanum lycopersicum , Elementos de DNA Transponíveis , Expressão Gênica , Hibridização Genética , Solanum lycopersicum/genética , Melhoramento Vegetal , RNARESUMO
Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.
Assuntos
Chlamydomonas reinhardtii/genética , Loci Gênicos , RNA Antissenso/genética , RNA de Plantas/genética , Composição de Bases , Análise por Conglomerados , Metilação de DNA , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Aprendizado de Máquina , Anotação de Sequência MolecularRESUMO
Sugarcane mosaic virus (SCMV) is distributed worldwide and infects three major crops: sugarcane, maize, and sorghum. The impact of SCMV is increased by its interaction with Maize chlorotic mottle virus which causes the synergistic maize disease maize lethal necrosis. Here, we characterised maize lethal necrosis-infected maize from multiple sites in East Africa, and found that SCMV was present in all thirty samples. This distribution pattern indicates that SCMV is a major partner virus in the East African maize lethal necrosis outbreak. Consistent with previous studies, our SCMV isolates were highly variable with several statistically supported recombination hot- and cold-spots across the SCMV genome. The recombination events generate conflicting phylogenetic signals from different fragments of the SCMV genome, so it is not appropriate to group SCMV genomes by simple similarity.
Assuntos
Filogenia , Potyvirus/genética , Recombinação Genética , Genes Virais , Sequenciamento de Nucleotídeos em Larga Escala , Potyvirus/classificação , Saccharum/virologia , Especificidade da EspécieRESUMO
Based on 98 public and internal small RNA high throughput sequencing libraries, we mapped small RNAs to the genome of the model organism Arabidopsis thaliana and defined loci based on their expression using an empirical Bayesian approach. The resulting loci were subsequently classified based on their genetic and epigenetic context as well as their expression properties. We present the results of this classification, which broadly conforms to previously reported divisions between transcriptional and post-transcriptional gene silencing small RNAs, and to PolIV and PolV dependencies. However, we are able to demonstrate the existence of further subdivisions in the small RNA population of functional significance. Moreover, we present a framework for similar analyses of small RNA populations in all species.
Assuntos
Arabidopsis/genética , Epigênese Genética/genética , Epigenômica/métodos , Proteínas de Arabidopsis/genética , Teorema de Bayes , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interferência de RNA/fisiologia , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismoRESUMO
The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model, we aim understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. Using genome-wide ChIP-seq analysis of acetylated histone H3, we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, in amino acid and nitrogen metabolism, in signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.