RESUMO
The brain's sensory lateralization involves the processing of information from the sensory organs primarily in one hemisphere. This can improve brain efficiency by reducing interference and duplication of neural circuits. For species that rely on successful interaction among family partners, such as geese, lateralization can be advantageous. However, at the group level, one-sided biases in sensory lateralization can make individuals predictable to competitors and predators. We investigated lateral preferences in the positioning of pair mates of Greater white-fronted geese Anser albifrons albifrons. Using GPS-GSM trackers, we monitored individual geese in flight throughout the year. Our findings indicate that geese exhibit individual lateral biases when viewing their mate in flight, but the direction of these biases varies among individuals. We suggest that these patterns of visual lateralization could be an adaptive trait for the species with long-term social monogamy, high levels of interspecies communication and competition, and high levels of predator and hunting pressure.
Assuntos
Voo Animal , Lateralidade Funcional , Gansos , Animais , Lateralidade Funcional/fisiologia , Gansos/fisiologia , Voo Animal/fisiologia , Masculino , Feminino , Percepção Visual/fisiologia , Comportamento Sexual Animal/fisiologiaRESUMO
IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.
Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/mortalidade , Animais , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Países Baixos/epidemiologia , RNA Viral/genética , Vigilância de Evento Sentinela , Análise de Sequência de DNARESUMO
In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe and North America. Here, wild birds were extensively investigated in the Netherlands for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and H5 gene) and antibody detection (haemagglutination inhibition and virus neutralisation assays) before, during and after the first virus detection in Europe in late 2014. Between 21 February 2015 and 31 January 2016, 7,337 bird samples were tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) sampled on 25 February 2015 was detected. Serological assays were performed on 1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 November 2014 and 13 May 2015, and 349 between 1 September and 31 December 2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera obtained before 2014 and present in sera collected during and after the HPAI H5N8 emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our results indicate that the HPAI H5N8 virus has not continued to circulate extensively in wild bird populations since the 2014/15 winter and that independent maintenance of the virus in these populations appears unlikely.
Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Animais , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/sangue , Países Baixos/epidemiologia , Testes de Neutralização , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Vigilância de Evento Sentinela , Análise de Sequência de DNARESUMO
BACKGROUND: Reconstructing phylogenetic relationships with genomic data remains a challenging endeavor. Numerous phylogenomic studies have reported incongruent gene trees when analyzing different genomic regions, complicating the search for a 'true' species tree. Some authors have argued that genomic regions of increased divergence (i.e. differentiation islands) reflect the species tree, although other studies have shown that these regions might produce misleading topologies due to species-specific selective sweeps or ancient introgression events. In this study, we tested the extent to which highly differentiated loci can resolve phylogenetic relationships in the Bean Goose complex, a group of goose taxa that includes the Taiga Bean Goose (Anser fabalis), the Tundra Bean Goose (Anser serrirostris) and the Pink-footed Goose (Anser brachyrhynchus). RESULTS: First, we show that a random selection of genomic loci-which mainly samples the undifferentiated regions of the genome-results in an unresolved species complex with a monophyletic A. brachyrhynchus embedded within a paraphyletic cluster of A. fabalis and A. serrirostris. Next, phylogenetic analyses of differentiation islands converged upon a topology of three monophyletic clades in which A. brachyrhynchus is sister to A. fabalis, and A. serrirostris is sister to the clade uniting these two species. Close inspection of the locus trees within the differentiated regions revealed that this topology was consistently supported over other phylogenetic arrangements. As it seems unlikely that selection or introgression events have impacted all differentiation islands in the same way, we are convinced that this topology reflects the 'true' species tree. Additional analyses, based on D-statistics, revealed extensive introgression between A. fabalis and A. serrirostris, which partly explains the failure to resolve the species complex with a random selection of genomic loci. Recent introgression between these taxa has probably erased the phylogenetic branching pattern across a large section of the genome, whereas differentiation islands were unaffected by the homogenizing gene flow and maintained the phylogenetic patterns that reflect the species tree. CONCLUSIONS: The evolution of the Bean Goose complex can be depicted as a simple bifurcating tree, but this would ignore the impact of introgressive hybridization. Hence, we advocate that the evolutionary relationships between these taxa are best represented as a phylogenetic network.