Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 232: 119694, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764108

RESUMO

Electrochemical softening is an effective technology for the treatment of circulating cooling water, but its hardness removal efficiency is limited because that nucleation and growth of scale crystals depended on cathode surface. In this study, a novel method was proposed to break through this limit via spatiotemporal management of nucleation and growth processes. A cube reactor was divided into cathodic chamber and anodic chamber via installing a sandwich structure module composed of mesh cathode, nylon nets, and mesh anode. Using this continuous-flowing electrochemical reactor, OH ̄ generated by water electrolysis was rapidly pushed away from cathode surface by water flow and hydrogen bubbles movement. As a result, a wide range of strongly alkaline regions was rapidly constructed in cathodic chamber to play a nucleation region, and homogeneous nucleation in liquid phase replaced heterogeneous nucleation on cathodic surface. Furthermore, the growth process of scale crystals in alkaline regions was monitored in situ. It took only 150 s of residence time to grow to 500 nm, which may be easily separated from water by a microfiltration membrane. With this new method, the precipitation rate was 290.8 g/(hˑm2) and corresponding energy consumption was 2.1 kW·h/kg CaCO3, both were superior to those reported values. Therefore, this study developed an efficient electrochemical softening method by spatial and temporal regulation of homogeneous nucleation and crystal growth processes.


Assuntos
Eletrólise , Abrandamento da Água , Cristalização , Técnicas Eletroquímicas , Água
2.
Chemosphere ; 295: 133929, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149017

RESUMO

It still remains a hotspot and great challenge to efficiently remove the nitrate nitrogen from high salt wastewater. Herein, a novel three dimensional porous bimetallic copper-nickel alloy electrode was fabricated with Ni foam (NiF) as substrate. The physicochemical and electrochemical characterization results showed Cu-Ni/NiF electrode possessed the smaller particle size (0.3-1.0 µm) and electrode film resistance comparing with Ni/NiF and Cu/NiF electrodes. Besides, higher double layer capacitance (Cdl) for Cu-Ni/NiF electrode indicated more electrochemical active sites could be used in the electrochemical nitrate nitrogen (NO3--N) removal. The electrochemical experiments showed the Cu-Ni/NiF electrode had the optimal NO3--N reduction ability and almost 100% NO3--N removal could be achieved with 30 min. All NO3--N removal processes were in accord with the pseudo-first-order reaction kinetics completely. The gaseous nitrogen selectivity for Cu-Ni/NiF electrode could reach 80.9% within 300 min. Stability assessment experiments indicated the Cu-Ni/NiF electrode all kept an excellent stability with Na2SO4 or NaCl electrolyte and the Cl- addition could significantly improve the gaseous nitrogen selectivity. Finally, a possible removal mechanism of NO3--N was proposed. This work offered a direction for designing non-noble bimetallic electrodes for nitrate removal.


Assuntos
Nitratos , Nitrogênio , Eletrodos , Nitratos/química , Óxidos de Nitrogênio
3.
Huan Jing Ke Xue ; 34(12): 4771-8, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24640922

RESUMO

Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.


Assuntos
Poluição Ambiental/análise , Indústrias Extrativas e de Processamento , Odorantes/análise , Petróleo/análise , Monitoramento Ambiental , Gases/análise
4.
Environ Sci Technol ; 43(6): 1935-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368195

RESUMO

A simple, environmentally friendly and continuous flow method was developed for the determination of COD based on a flow injection analysis (FIA) system, in which a BDD electrode was employed as the detecting element. The structure and the electrochemical behavior of BDD were investigated by a scanning electron microscope, Raman spectroscopy, and cyclic voltammetry, respectively. The results demonstrated thatthe high-quality BDD film prepared here was suitable to be used as an electrode, with which the COD measurement could be conducted. The effect of several important experimental parameters, such as applied potentials, pH, flow rates, and supporting electrolyte concentrations, on the analytical performance was investigated. Under optimized testing conditions, the proposed method was successfully applied in the COD analysis of synthetic samples. The linear range and the detection limit were 2-175 and 1 mg L(-1), respectively. In addition, the COD values determined by the proposed method compared well with those analyzed bythe conventional method as demonstrated by small relative errors.


Assuntos
Boro/química , Diamante/química , Eletrodos , Análise de Injeção de Fluxo/instrumentação , Oxigênio/metabolismo , Poluição Química da Água/análise , Eletroquímica , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA