Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2314248121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266045

RESUMO

Interstitial atoms usually diffuse much faster than vacancies, which is often the root cause for the ineffective recombination of point defects in metals under irradiation. Here, via ab initio modeling of single-defect diffusion behavior in the equiatomic NiCoCrFe(Pd) alloy, we demonstrate an alloy design strategy that can reduce the diffusivity difference between the two types of point defects. The two diffusivities become almost equal after substituting the NiCoCrFe base alloy with Pd. The underlying mechanism is that Pd, with a much larger atomic size (hence larger compressibility) than the rest of the constituents, not only heightens the activation energy barrier (Ea) for interstitial motion by narrowing the diffusion channels but simultaneously also reduces Ea for vacancies due to less energy penalty required for bond length change between the initial and the saddle states. Our findings have a broad implication that the dynamics of point defects can be manipulated by taking advantage of the atomic size disparity, to facilitate point-defect annihilation that suppresses void formation and swelling, thereby improving radiation tolerance.

2.
Proc Natl Acad Sci U S A ; 120(15): e2218673120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014854

RESUMO

High- (and medium-) entropy alloys have emerged as potentially suitable structural materials for nuclear applications, particularly as they appear to show promising irradiation resistance. Recent studies have provided evidence of the presence of local chemical order (LCO) as a salient feature of these complex concentrated solid-solution alloys. However, the influence of such LCO on their irradiation response has remained uncertain thus far. In this work, we combine ion irradiation experiments with large-scale atomistic simulations to reveal that the presence of chemical short-range order, developed as an early stage of LCO, slows down the formation and evolution of point defects in the equiatomic medium-entropy alloy CrCoNi during irradiation. In particular, the irradiation-induced vacancies and interstitials exhibit a smaller difference in their mobility, arising from a stronger effect of LCO in localizing interstitial diffusion. This effect promotes their recombination as the LCO serves to tune the migration energy barriers of these point defects, thereby delaying the initiation of damage. These findings imply that local chemical ordering may provide a variable in the design space to enhance the resistance of multi-principal element alloys to irradiation damage.

3.
Proc Natl Acad Sci U S A ; 119(48): e2213941119, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409913

RESUMO

Plastic flow in metallic glasses (MGs) is known to be mediated by shear transformations (STs), which have been hypothesized to preferentially initiate from identifiable local "defect" regions with loose atomic packing. Here we show that the above idea is incorrect, i.e., STs do not arise from signature structural defects that can be recognized a priori. This conclusion is reached via a realistic MG model obtained by combining molecular dynamics (MD) and Monte Carlo simulations, achieving liquid solidification at an effective cooling rate as slow as 500 K/s to approach that typical in experiments for producing bulk MGs. At shear stresses before global yielding, only about 2% of the total atoms participate in STs, each event involving typically ~10 atoms. These observations rectify the excessive content of "liquid-like regions" retained from unrealistically fast quench in MD-produced glass models. Our findings also shed light on the indeterministic aspect of the ST sites/zones, which emerge with varying spatial locations and distribution depending on specific mechanical loading conditions.

4.
Proc Natl Acad Sci U S A ; 117(28): 16199-16206, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601202

RESUMO

Atomistic simulations of dislocation mobility reveal that body-centered cubic (BCC) high-entropy alloys (HEAs) are distinctly different from traditional BCC metals. HEAs are concentrated solutions in which composition fluctuation is almost inevitable. The resultant inhomogeneities, while locally promoting kink nucleation on screw dislocations, trap them against propagation with an appreciable energy barrier, replacing kink nucleation as the rate-limiting mechanism. Edge dislocations encounter a similar activated process of nanoscale segment detrapping, with comparable activation barrier. As a result, the mobility of edge dislocations, and hence their contribution to strength, becomes comparable to screw dislocations.

5.
Proc Natl Acad Sci U S A ; 115(28): 7224-7229, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946032

RESUMO

Ductility, i.e., uniform strain achievable in uniaxial tension, diminishes for materials with very high yield strength. Even for the CrCoNi medium-entropy alloy (MEA), which has a simple face-centered cubic (FCC) structure that would bode well for high ductility, the fine grains processed to achieve gigapascal strength exhaust the strain hardening ability such that, after yielding, the uniform tensile strain is as low as ∼2%. Here we purposely deploy, in this MEA, a three-level heterogeneous grain structure (HGS) with grain sizes spanning the nanometer to micrometer range, imparting a high yield strength well in excess of 1 GPa. This heterogeneity results from this alloy's low stacking fault energy, which facilitates corner twins in recrystallization and stores deformation twins and stacking faults during tensile straining. After yielding, the elastoplastic transition through load transfer and strain partitioning among grains of different sizes leads to an upturn of the strain hardening rate, and, upon further tensile straining at room temperature, corner twins evolve into nanograins. This dynamically reinforced HGS leads to a sustainable strain hardening rate, a record-wide hysteresis loop in load-unload-reload stress-strain curve and hence high back stresses, and, consequently, a uniform tensile strain of 22%. As such, this HGS achieves, in a single-phase FCC alloy, a strength-ductility combination that would normally require heterogeneous microstructures such as in dual-phase steels.

6.
Proc Natl Acad Sci U S A ; 112(44): 13502-7, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483463

RESUMO

When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This "cyclic healing" of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.

7.
Small ; 13(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709779

RESUMO

Silicon is used as a prominent case to demonstrate the dramatic effects of helium ion microscope nanofabrication. Structurally, a submicrometer Si pillar can turn completely amorphous at He+ doses typically used for micromachining, forming nanobubbles at higher doses. In terms of mechanical properties, the flow stress decreases markedly with increasing dosage, and the softened amorphous Si exhibits spread-out plastic flow.

8.
Proc Natl Acad Sci U S A ; 111(39): 14052-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25228762

RESUMO

In a 3D model mimicking realistic Cu64Zr36 metallic glass, we uncovered a direct link between the quasi-localized low-frequency vibrational modes and the local atomic packing structure. We also demonstrate that quasi-localized soft modes correlate strongly with fertile sites for shear transformations: geometrically unfavored motifs constitute the most flexible local environments that encourage soft modes and high propensity for shear transformations, whereas local configurations preferred in this alloy, i.e., the full icosahedra (around Cu) and Z16 Kasper polyhedra (around Zr), contribute the least.

9.
Microsc Microanal ; 23(1): 173-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228170

RESUMO

Formation of a nanometer-scale oxide surface layer is common when a material is exposed to oxygen-containing environment. Employing aberration-corrected analytical transmission electron microscopy and using single crystal SnSe as an example, we show that for an alloy, a second thin amorphous layer can appear underneath the outmost oxide layer. This inner amorphous layer is not oxide based, but instead originates from solid-state amorphization of the base alloy when its free energy rises to above that of the metastable amorphous state; which is a result of the composition shift due to the preferential depletion of the oxidizing species, in our case, the outgoing Sn reacting with the oxygen atmosphere.

10.
Nano Lett ; 16(7): 4118-24, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27249672

RESUMO

The workability and ductility of metals usually degrade with exposure to irradiation, hence the phrase "radiation damage". Here, we found that helium (He) radiation can actually enhance the room-temperature deformability of submicron-sized copper. In particular, Cu single crystals with diameter of 100-300 nm and containing numerous pressurized sub-10 nm He bubbles become stronger, more stable in plastic flow and ductile in tension, compared to fully dense samples of the same dimensions that tend to display plastic instability (strain bursts). The sub-10 nm He bubbles are seen to be dislocation sources as well as shearable obstacles, which promote dislocation storage and reduce dislocation mean free path, thus contributing to more homogeneous and stable plasticity. Failure happens abruptly only after significant bubble coalescence. The current findings can be explained in light of Weibull statistics of failure and the beneficial effects of bubbles on plasticity. These results shed light on plasticity and damage developments in metals and could open new avenues for making mechanically robust nano- and microstructures by ion beam processing and He bubble engineering.

11.
Nat Mater ; 14(9): 899-903, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121306

RESUMO

The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.

12.
Phys Rev Lett ; 117(16): 165501, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792389

RESUMO

Under ultrahigh stresses (e.g., under high strain rates or in small-volume metals) deformation twinning (DT) initiates on a very short time scale, indicating strong spatial-temporal correlations in dislocation dynamics. Using atomistic simulations, here we demonstrate that surface rebound of relativistic dislocations directly and efficiently triggers DT under a wide range of laboratory experimental conditions. Because of its stronger temporal correlation, surface rebound sustained relay of partial dislocations is shown to be dominant over the conventional mechanism of thermally activated nucleation of twinning dislocations.

13.
Phys Rev Lett ; 117(21): 215501, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911524

RESUMO

Helium bubbles are one of the typical radiation microstructures in metals and alloys, significantly influencing their deformation behavior. However, the dynamic evolution of helium bubbles under straining is less explored so far. Here, by using in situ micromechanical testing inside a transmission electron microscope, we discover that the helium bubble not only can coalesce with adjacent bubbles, but also can split into several nanoscale bubbles under tension. Alignment of the splittings along a slip line can create a bubble-free channel, which appears softer, promotes shear localization, and accelerates the failure in the shearing-off mode. Detailed analyses unveil that the unexpected bubble fragmentation is mediated by the combination of dislocation cutting and internal surface diffusion, which is an alternative microdamage mechanism of helium irradiated copper besides the bubble coalescence.

14.
Nature ; 463(7279): 335-8, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20090749

RESUMO

Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications.

15.
Proc Natl Acad Sci U S A ; 110(49): 19725-30, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24255113

RESUMO

Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.


Assuntos
Vidro/química , Nanopartículas Metálicas/química , Estresse Mecânico , Teste de Materiais , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular
16.
Nano Lett ; 15(12): 7886-92, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26510098

RESUMO

Great efforts have been made to synthesize ZnO nanowires (NWs) as building blocks for a broad range of applications because of their unique mechanical and mechanoelectrical properties. However, little attention has been paid to the correlation between the NWs synthesis condition and these properties. Here we demonstrate that by slightly adjusting the NW growth conditions, the cross-sectional shape of the NWs can be tuned from hexagonal to circular. Room temperature photoluminescence spectra suggested that NWs with cylindrical geometry have a higher density of point defects. In situ transmission electron microscopy (TEM) uniaxial tensile-electrical coupling tests revealed that for similar diameter, the Young's modulus and electrical resistivity of hexagonal NWs is always larger than that of cylindrical NWs, whereas the piezoresistive coefficient of cylindrical NWs is generally higher. With decreasing diameter, the Young's modulus and the resistivity of NWs increase, whereas their piezoresistive coefficient decreases, regardless of the sample geometry. Our findings shed new light on understanding and advancing the performance of ZnO-NW-based devices through optimizing the synthesis conditions of the NWs.

17.
Nat Mater ; 17(8): 654-655, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915426
18.
Adv Mater ; : e2405459, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847443

RESUMO

Eutectic alloys (EAs) with superior fluidity are known to be the easiest to cast into high-quality ingots, making them the alloys of choice for making large-sized structural parts. However, conventional EAs (CEAs) have never reached strength-ductility combinations on par with the best in other alloy categories. Via thermomechanical processing of cast Ni-32.88wt%Fe-9.53wt%Al CEAs, a cocoon-like nano-meshed (as fine as 26 nm) network of dislocations (CNN-D) is produced via recovery annealing, through the rearrangement of cold-work-accumulated dislocations anchored by dense pre-existing nanoprecipitates. In lieu of traditional plasticity mechanisms, such as TWIP and TRIP, the CNN-D is particularly effective in eutectic lamellae with alternating phases, as it instigates nanometer-spaced planar slip bands that not only dynamically refine the microstructure but also transmit from the FCC (face-centered-cubic) layers into the otherwise brittle B2 layers. These additional mechanisms for strengthening and strain hardening sustain stable tensile flow, resulting in a striking elevation of both strength and ductility to outrank not only all previous CEAs, but also the state of the art-additively manufactured eutectic high-entropy alloys. The CNN-D thus adds a novel microstructural strategy for performance enhancement, especially for compositionally complex alloys that increasingly make use of nanoprecipitates or local chemical order.

19.
Nano Lett ; 12(8): 4045-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22731885

RESUMO

In situ tensile tests of Cu single crystalline nanowires in a high-resolution transmission electron microscope reveal a novel effect of sample dimensions on plasticity mechanisms. When the single crystalline nanowire size was reduced to <∼150 nm, the normal full dislocation slip was taken over by partial dislocation mediated plasticity (PDMP). For the first time, we demonstrate this transition in a quantitative manner by assessing the relative contributions to plastic strain from PDMP and full dislocations. The crossover sample size is consistent, well within model predictions. This discovery represents yet another "sample size effect", beyond other reported influence of sample dimensions on the mechanical behavior of metals, such as dislocation starvation or source truncation, and the "smaller is stronger" trend.

20.
Nat Mater ; 14(6): 547-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25990900
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA