Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116161, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196694

RESUMO

The treatment of heavy metal ion contamination in aquatic ecosystems has been a growing global concern for centuries. Iron oxide nanomaterials are effective in heavy metals removal, but are frequently challenging due to the precipitation of Fe(III) and poor reusability. To improve the removal of heavy metals by iron hydroxyl oxide (FeOOH), the iron-manganese oxide material (FMBO) was separately prepared to remove Cd(II), Ni(II), and Pb(II) in individual and multiple systems. Results revealed that the loading of Mn enlarged the specific surface area and stabilized the structure of FeOOH. FMBO achieved 18%, 17%, and 40% higher removal capacities of Cd(II), Ni(II), and Pb(II) than that of FeOOH, respectively. Besides, mass spectrometry analysis demonstrated that the surface hydroxyls (-OH, Fe/Mn-OH) of FeOOH and FMBO provided the active sites for metal complexation. Fe(III) was reduced by Mn ions and further complexed with heavy metals. Further density functional theory calculations revealed that Mn loading led to the structural reconstruction of the electron transfer, which significantly promoted stable hybridization. This confirmed that FMBO improved the properties of FeOOH and was efficient for removing heavy metals from wastewater.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Compostos Férricos/química , Cádmio/análise , Ecossistema , Chumbo , Ferro/química , Água , Adsorção , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 447: 130819, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680904

RESUMO

Polyfluoroalkyl substance (PFAS) pose a threat to the aquatic environment due to their environmental persistence. The removal of PFAS using constructed wetlands (CWs) has received interest, but the adsorption saturation and limited removal capacity of the substrate is frequently challenging. To enhance the microbial degradation and performance of the substrate, different configurations of iron minerals were used as substrate to remove perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA) from CWs. The addition of iron minerals resulted in elimination of 57.2% and 63.9% of PFOS and PFOA in the effluent, respectively, which were 35.0% and 36.8% higher than that of control. Moreover, up to 85.4%, 86%, and 85.1% of NH4+, NO3-, and phosphorus, respectively, was removed using iron minerals. The enhanced electron transfer in iron mineral-based CWs was confirmed by a 61.2% increase in cytochrome C reductase content and an increased Fe(III)/Fe(II) ratio. Microbial analysis showed that the proportions of microbes with PFAS removal capacity (e.g. Burkholderiae and Pseudomonas), and the key pathways of the TCA cycle and glycolysis were increased in iron mineral-based CW. Based on these findings, we conclude that supplementation with iron mineral could enhance PFOA and PFOS removal in CWs.


Assuntos
Fluorocarbonos , Ferro , Áreas Alagadas , Minerais
3.
J Hazard Mater ; 443(Pt B): 130322, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368068

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) pose a high risk to ecosystems owing to their adverse environmental effects. The use of biochar in constructed wetlands (CWs) to remove PAH has received increased interest, but is frequently challenging because of saturation adsorption. To enhance the microbial degradation, electron acceptors are provided. This study aimed to remove a representative PAH, benzofluoranthrene (BbF), using iron-modified biochar as a supplement to the CW substrate. Results revealed that iron-mediated biochar based CWs increased the removal of BbF by 20.4 % and ammonium by 25.6 %. The BbF retained in substrate with biochar (36.6 % higher content) and further removed with iron modification (40.6 % lower content). Iron-modified biochar increased dissolved organic carbon content, particularly low-aromaticity, and low-molecular-weight organic matters (25.7 % higher tryptophan-like material), which contributed to PAH degradation by microorganisms. Microbial analysis confirmed that iron-mediated biochar enriched the abundance of microbes (e.g., Cellulomonas, Actinotalea, and Sphingomonas) and key enzymes (e.g., catA, lipV, and sdhA) that are involved in PAH degradation. Higher proportion of iron-reducing bacteria (e. g., Thiobacillus, Rhodobacter) played a significant role in driving microbial iron cycle, which was beneficial for PAHs removal. Based on the results, we confirmed that the use of iron-modified biochar in CWs enhance PAH removal.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Áreas Alagadas , Matéria Orgânica Dissolvida , Ferro , Ecossistema , Carvão Vegetal/química , Hidrocarbonetos Policíclicos Aromáticos/química
4.
Commun Biol ; 6(1): 967, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783748

RESUMO

Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Fator de Transcrição STAT4 , Camundongos , Animais , Fator de Transcrição STAT4/metabolismo , Doenças Neuroinflamatórias , Plasticidade Neuronal , Colesterol/metabolismo , Células Mieloides/metabolismo
5.
Sci Total Environ ; 819: 153157, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038502

RESUMO

Heavy metal pollution has a serious negative impact on the ecological environment and human health due to its toxicity, persistence, and non-biodegradable properties. Among the technologies applied in heavy metals removal, adsorption has been widely used as the most promising method because of its simple operation, high removal efficiency, strong applicability, and low cost. Iron-manganese oxide nanomaterials, as an effective absorbent, have attracted wide attention due to their simple preparation, wide material sources, and lower ecological impact. So far, no quantitative investigation has been conducted on the preparation and application of iron-manganese oxide nanomaterials in heavy metals removal. This review discussed the preparation methods and characteristics of iron­manganese oxide nanomaterials over the past decade and provided some basic information for the improvement of preparation methods. The physicochemical properties of iron­manganese oxide nanomaterials and environmental conditions are regarded as important factors that affect the removal efficiency of heavy metals. In addition, the removal mechanisms of heavy metals in aqueous solution with iron­manganese oxide nanomaterials were mainly included redox, complex precipitation, electrostatic attraction, and ion exchange. The reusability and practicability in actual wastewater treatment of 3nganese oxide nanomaterials were further discussed. Several key problems still need to be solved in the existing progress, such as improving the ability and stability of the iron­manganese oxide nanomaterials to remove heavy metals from actual wastewater. In conclusion, this review provides a future direction for the application of iron­manganese oxide nanomaterials for heavy metals removal and even in the large-scale treatment of actual wastewater.


Assuntos
Metais Pesados , Nanoestruturas , Poluentes Químicos da Água , Adsorção , Humanos , Ferro , Manganês , Compostos de Manganês , Metais Pesados/química , Nanoestruturas/química , Óxidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA