Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Angew Chem Int Ed Engl ; 63(11): e202319125, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38252071

RESUMO

Organic additives with high-reduction potentials are generally applied in aqueous electrolytes to stabilize the Zn anode, while compromise safety and environmental compatibility. Highly concentrated water-in-salt electrolytes have been proposed to realize the high reversibility of Zn plating/stripping; however, their high cost and viscosity hinder their practical applications. Therefore, exploring low-concentration Zn salts, that can be used directly to stabilize Zn anodes, is of primary importance. Herein, we developed an asymmetric anion group, bi(difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (DFTFSI- )-based novel zinc salt, Zn(DFTFSI)2 , to obtain a high ionic conductivity and a highly stable dendrite-free Zn anode. Experimental tests and theoretical calculations verified that DFTFSI- in the Zn2+ solvation sheath and inner Helmholtz plane would be preferentially reduced to construct layer-structured SEI films, inhibiting hydrogen evolution and side reactions. Consequently, the Zn | | ${||}$ Zn symmetric cell with 1M Zn(DFTFSI)2 aqueous electrolyte delivers an ultralong cycle life for >2500 h outperforming many other conventional Zn salt electrolytes. The Zn | | ${||}$ Br2 battery also exhibits a long lifespan over 1200 cycles at ~99.8 % Coulombic efficiency with a high capacity retention of 92.5 %. Furthermore, this outstanding performance translates well to a high-areal-capacity Zn | | ${||}$ Br2 battery (~5.6 mAh ⋅ cm-2 ), cycling over 320 cycles with 95.3 % initial capacity retained.

2.
Angew Chem Int Ed Engl ; 63(8): e202316841, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091256

RESUMO

Although rechargeable aqueous zinc batteries are cost effectiveness, intrinsicly safe, and high activity, they are also known for bringing rampant hydrogen evolution reaction and corrosion. While eutectic electrolytes can effectively eliminate these issues, its high viscosity severely reduces the mobility of Zn2+ ions and exhibits poor temperature adaptability. Here, we infuse acetamide molecules with Lewis base and hydrogen bond donors into a solvated shell of Zn[(H2 O)6 ]2+ to create Zn(H2 O)3 (ace)(BF4 )2 . The viscosity of 1ace-1H2 O is 0.032 Pa s, significantly lower than that of 1ace-0H2 O (995.6 Pa s), which improves ionic conductivity (9.56 mS cm-1 ) and shows lower freezing point of -45 °C, as opposed to 1ace-0H2 O of 4.04 mS cm-1 and 12 °C, respectively. The acidity of 1ace-1H2 O is ≈2.8, higher than 0ace-1H2 O at ≈0.76, making side reactions less likely. Furthermore, benefiting from the ZnCO3 /ZnF2 -rich organic/inorganic solid electrolyte interface, the Zn || Zn cells cycle more than 1300 hours at 1 mA cm-2 , and the Zn || Cu operated over 1800 cycles with an average Coulomb efficiency of ≈99.8 %. The Zn || PANI cell cycled over 8500 cycles, with a specific capacity of 99.8 mAh g-1 at 5 A g-1 at room temperature, and operated at -40 °C with a capacity of 66.8 mAh g-1 .

3.
Angew Chem Int Ed Engl ; 62(19): e202301467, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36882370

RESUMO

Though massive efforts have been devoted to exploring Br-based batteries, the highly soluble Br2 /Br3 - species causing rigorous "shuttle effect", leads to severe self-discharge and low Coulombic efficiency. Conventionally, quaternary ammonium salts such as methyl ethyl morpholinium bromide (MEMBr) and tetrapropylammonium bromide (TPABr) are used to fix Br2 and Br3 - , but they occupy the mass and volume of battery without capacity contribution. Here, we report an all-active solid interhalogen compound, IBr, as a cathode to address the above challenges, in which the oxidized Br0 is fixed by iodine (I), thoroughly eliminating cross-diffusing Br2 /Br3 - species during the whole charging and discharging process. The Zn||IBr battery delivers remarkably high energy density of 385.8 Wh kg-1 , which is higher than those of I2 , MEMBr3 , and TPABr3 cathodes. Our work provides new approaches to achieve active solid interhalogen chemistry for high-energy electrochemical energy storage devices.

4.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234963

RESUMO

Theranostics play an important role in cancer treatment due to its realized real-time tracking of therapeutic efficacy in situ. In this work, we have designed and synthesized a terpyridine-modified pillar [5]arenes (TP5). By the coordination of terpyridine and Zn2+, the complex TP5/Zn was obtained. Then, supramolecular amphiphile can be constructed by using host-guest complexation between a polyethylene glycol contained guest (PM) and TP5/Zn. Combining the fluorescence properties from the terpyridine group and the amphiphilicity from the system, the obtained TP5/Zn/PM can further be self-assembled into fluorescent particles with diameters of about 150 nm in water. The obtained particles can effectively load anti-cancer drugs and realize living cell imaging and a precise release of the drugs.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Água
5.
Angew Chem Int Ed Engl ; 61(48): e202212767, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36207809

RESUMO

Alkaline aqueous batteries such as the Zn||Ni batteries have attracted substantial interests due to their merits of high energy density, high safety and low cost. However, the freeze of aqueous electrolyte and the poor cycling stability in alkaline condition have hindered their operation in subzero conditions. Herein, we construct a stable aqueous electrolyte with lowest freezing point down to -90 °C by adding dimethyl sulfoxide (DMSO) as alkaline tolerant antifreezing additive into 1 M KOH solution. Meanwhile, we find the DMSO can also retard Zn anode corrosion and prevent Zn dendrite formation in alkaline condition, which enables the Zn plating/stripping over 700 h cycle at 1 mA cm-2 and 0.5 mAh cm-2 . The fabricated Zn||Ni battery can endure low working temperature even down to -60 °C and its dischage capacity retains 84.1 % at -40 °C, 60.6 % at -60 °C at 0.5 C. Meanwhile, it can maintain 600 cycles with a specific capacity retention of 86.5 % at -40 °C at 2 C.

6.
Angew Chem Int Ed Engl ; 60(7): 3791-3798, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33314550

RESUMO

Proposed are Prussian blue analogue hosts with ordered and continuous channels, and electrocatalytic functionality with open Co and Fe species, which facilitate maximum I2 utilization efficiency and direct I2 to I- conversion kinetics of the I2 reduction reaction, and free up 1/3 I- from I3 - . Co[Co1/4 Fe3/4 (CN)6 ] exhibits a low energy barrier (0.47 kJ mol-1 ) and low Tafel slope (76.74 mV dec-1 ). Accordingly, the Co[Co1/4 Fe3/4 (CN)6 ]/I2 //Zn battery delivers a capacity of 236.8 mAh g-1 at 0.1 A g-1 and a rate performance with 151.4 mAh g-1 achieved even at 20 A g-1 . The battery delivers both high energy density and high-power density of 305.5 Wh kg-1 and 109.1 kW kg-1 , higher than I2 //Zn batteries reported to date. Furthermore, solid-state flexible batteries were constructed. A 100 mAh high capacity solid-state I2 //Zn battery is demonstrated with excellent cycling performance of 81.2 % capacity retained after 400 cycles.

7.
Angew Chem Int Ed Engl ; 60(2): 1011-1021, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965789

RESUMO

Pseudocapacitive behavior and ion hybrid capacitors can improve the energy density of supercapacitors, but research has only considered the reaction of cations during the electrochemical process, leading to a flawed mechanistic understanding. Here, the effects of various anions carriers on the electrochemical behaviors of titanium nitride-based zinc ion capacitor (Zn-TiN capacitor) were explored. DFT calculations revealed the stable structure of TiN-SO4 after adsorbed process, enabling SO4 2- participate in the electrochemical process and construct a two-step adsorption and intercalation energy storage mechanism, improving the capacitance and anti-self-discharge ability of the Zn-TiN capacitor, which delivered an ultrahigh capacitance of 489.8 F g-1 and retained 83.92 % of capacitance even after 500 h resting time. An energy storage system involving anions in the electrochemical process can improve capacitance and anti-self-discharge ability of ion hybrid capacitors.

8.
Small ; 16(10): e1907341, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32049440

RESUMO

Different from graphene with the highly stable sp2 -hybridized carbon atoms, which shows poor controllability for constructing strong interactions between graphene and guest metal, graphdiyne has a great potential to be engineered because its high-reactive acetylene linkages can effectively chelate metal atoms. Herein, a hydrogen-substituted graphdiyne (HsGDY) supported metal catalyst system through in situ growth of Cu3 Pd nanoalloys on HsGDY surface is developed. Benefiting from the strong metal-chelating ability of acetylenic linkages, Cu3 Pd nanoalloys are intimately anchored on HsGDY surface that accordingly creates a strong interaction. The optimal HsGDY-supported Cu3 Pd catalyst (HsGDY/Cu3 Pd-750) exhibits outstanding electrocatalytic activity for the oxygen reduction reaction (ORR) with an admirable half-wave potential (0.870 V), an impressive kinetic current density at 0.75 V (57.7 mA cm-2 ) and long-term stability, far outperforming those of the state-of-the-art Pt/C catalyst (0.859 V and 15.8 mA cm-2 ). This excellent performance is further highlighted by the Zn-air battery using HsGDY/Cu3 Pd-750 as cathode. Density function theory calculations show that such electrocatalytic performance is attributed to the strong interaction between Cu3 Pd and CC bonds of HsGDY, which causes the asymmetric electron distribution on two carbon atoms of CC bond and the strong charge transfer to weaken the shoulder-to-shoulder π conjugation, eventually facilitating the ORR process.

9.
Angew Chem Int Ed Engl ; 59(52): 23836-23844, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935895

RESUMO

Zn batteries are usually considered as safe aqueous systems that are promising for flexible batteries. On the other hand, any liquids, including water, being encapsulated in a deformable battery may result in problems. Developing completely liquid-free all-solid-state Zn batteries needs high-quality solid-state electrolytes (SSEs). Herein, we demonstrate in situ polymerized amorphous solid poly(1,3-dioxolane) electrolytes, which show high Zn ion conductivity of 19.6 mS cm-1 at room temperature, low interfacial impedance, highly reversible Zn plating/stripping over 1800 h cycles, uniform and dendrite-free Zn deposition, and non-dry properties. The in-plane interdigital-structure device with the electrolyte completely exposed to the open atmosphere can be operated stably for over 30 days almost without weight loss or electrochemical performance decay. Furthermore, the sandwich-structure device can normally operate over 40 min under exposure to fire. Meanwhile, the interfacial impedance and the capacity using in situ-formed solid polymer electrolytes (SPEs) remain almost unchanged after various bending tests, a key criterion for flexible/wearable devices. Our study demonstrates an approach for SSEs that fulfill the requirement of no liquid and mechanical robustness for practical solid-state Zn batteries.

10.
Nanotechnology ; 30(33): 335704, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30986771

RESUMO

Graphene as a coating material that shows high impermeability as an excellent barrier in oxidation and corrosion protection has been reported to be less stable at elevated temperature. Sometimes the formed galvanic cell between the graphene and protective surface will even increase the corrosion speed. In comparison, boron nitride (BN), which shows the same impermeability with graphene, is believed to be a better coating material with its superior thermal and chemical inertness. In this study, an in situ synthesis of BN coatings, grown by boron ink, on both carbon and Cu for anti-oxidation and anti-corrosion purposes has been demonstrated. Thermogravimetric analysis and electrochemical analysis reveal that the BN coatings can effectively prevent the carbon from being oxidized at high temperature in air and adequately slow down the corrosion rate of Cu in sodium chloride solution, respectively. These results indicate that boron ink assisted in situ BN coating has high potential in the applications of oxidation and corrosion protection.

11.
Small ; 14(51): e1803978, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30444576

RESUMO

There is a growing demand for flexible and wearable energy devices. How to enhance their tolerance to various mechanical stresses is a key issue. Bending, stretching, or twisting of flexible batteries has been widely researched. However, shear force is inevitably applied on the batteries during stretching, bending, and twisting. Unfortunately, thus far, research on analyzing shear resistance of solid batteries or even enhancing the shear tolerance has never been reported. Herein, a sewable Zn-MnO2 battery based on a nanofibrillated cellulose (NFC)/ployacrylamide (PAM) hydrogel, electrodeposited Zn nanoplates anode, and carbon nanotube (CNT)/α-MnO2 cathode is reported. The designed NFC/PAM hydrogel exhibits a relatively high mechanical strength with a large stretchability; the preformed NFC bone network stabilizes the large pores as channels for electrolyte diffusion. Furthermore, the effect of sewing on enhancing the shear resistance of the solid batteries is analyzed. The sewed Zn-MnO2 battery retains 88.5% of its capacity after 120 stitches, and withstands a large shear force of 43 N. The sewable and safe Zn-MnO2 is also able to be designed into a skirt and put on a toy as an energy source to power a red light emitting diode.

12.
ACS Appl Mater Interfaces ; 16(8): 10009-10018, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376956

RESUMO

Although aqueous zinc batteries have attracted extensive interest, they are limited by relatively low rate capabilities and poor cyclic stability of cathodes. The crystal orientation of the cathode is one important factor influencing electrochemical properties. However, it has rarely been investigated. Herein, VO2 cathodes with different crystal orientations are developed via tuning the number of hydroxyl groups in polyol, such as using glycerol, erythritol, xylitol, or mannitol. The polyols serve as a reductant as well as a structure-directing agent through a hydrothermal reaction. Xylitol-derived VO2 shows a (110)-orientated crystalline structure and ultrathin nanosheet morphology. Such features greatly enhance the pseudocapacitance to 76.1% at a scan rate of 1.0 mV s-1, which is significantly larger than that (61.6%) of the (001)-oriented VO2 derived from glycerol. The corresponding aqueous zinc batteries exhibit a high energy storage performance with a reversible specific capacity of 317 mAh g-1 at 0.5 A g-1, rate ability of 220 mAh g-1 at 10 A g-1, and capacity retention of 81.0% at 10 A g-1 over 2000 cycles. This work demonstrates a facile method for tailoring VO2 crystal orientations, offers an understanding of the Zn2+ storage mechanism upon different VO2 facets, and provides a novel method to develop cathode materials toward advanced aqueous zinc batteries.

14.
Nanomicro Lett ; 15(1): 126, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209237

RESUMO

Rechargeable aqueous zinc iodine (ZnǀǀI2) batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode, iodine cathode and aqueous electrolytes. Whereas, on one hand, the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides, deficient iodine utilization and sluggish reaction kinetics. On the other hand, the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density. Here, we propose a "confinement-catalysis" host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host, which can effectively confine and catalytically convert I2/I- couple and polyiodide intermediates. Consequently, the cathode enables the high capacity of 188.2 mAh g-1 at 0.3 A g-1, excellent rate capability with a capacity of 139.6 mAh g-1 delivered at high current density of 15 A g-1 and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%. Furthermore, the electrocatalytic host can also accelerate the [Formula: see text] conversion. The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I-/I2 and I2/I+ couples, and polyiodide intermediates conversions.

15.
Nanomicro Lett ; 16(1): 51, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099969

RESUMO

With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.

16.
Nat Commun ; 14(1): 2925, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217467

RESUMO

One of the major obstacles hindering the application of zinc metal batteries is the contradictory demands from the Zn metal anode and cathodes. At the anode side, water induces serious corrosion and dendrite growth, remarkably suppressing the reversibility of Zn plating/stripping. At the cathode side, water is essential because many cathode materials require both H+ and Zn2+ insertion/extraction to achieve a high capacity and long lifespan. Herein, an asymmetric design of inorganic solid-state electrolyte combined with hydrogel electrolyte is presented to simultaneously meet the as-mentioned contrary requirements. The inorganic solid-state electrolyte is toward the Zn anode to realize a dendrite-free and corrosion-free highly reversible Zn plating/stripping, and the hydrogel electrolyte enables consequent H+ and Zn2+ insertion/extraction at the cathode side for high performance. Therefore, there is no hydrogen and dendrite growth detected in cells with a super high-areal-capacity up to 10 mAh·cm-2 (Zn//Zn), ~5.5 mAh·cm-2 (Zn//MnO2) and ~7.2 mAh·cm-2 (Zn//V2O5). These Zn//MnO2 and Zn//V2O5 batteries show remarkable cycling stability over 1000 cycles with 92.4% and over 400 cycles with 90.5% initial capacity retained, respectively.

17.
Nanomicro Lett ; 15(1): 47, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763196

RESUMO

Transition metal-nitrogen-carbon materials (M-N-Cs), particularly Fe-N-Cs, have been found to be electroactive for accelerating oxygen reduction reaction (ORR) kinetics. Although substantial efforts have been devoted to design Fe-N-Cs with increased active species content, surface area, and electronic conductivity, their performance is still far from satisfactory. Hitherto, there is limited research about regulation on the electronic spin states of Fe centers for Fe-N-Cs electrocatalysts to improve their catalytic performance. Here, we introduce Ti3C2 MXene with sulfur terminals to regulate the electronic configuration of FeN4 species and dramatically enhance catalytic activity toward ORR. The MXene with sulfur terminals induce the spin-state transition of FeN4 species and Fe 3d electron delocalization with d band center upshift, enabling the Fe(II) ions to bind oxygen in the end-on adsorption mode favorable to initiate the reduction of oxygen and boosting oxygen-containing groups adsorption on FeN4 species and ORR kinetics. The resulting FeN4-Ti3C2Sx exhibits comparable catalytic performance to those of commercial Pt-C. The developed wearable ZABs using FeN4-Ti3C2Sx also exhibit fast kinetics and excellent stability. This study confirms that regulation of the electronic structure of active species via coupling with their support can be a major contributor to enhance their catalytic activity.

18.
Chem Commun (Camb) ; 59(53): 8266-8269, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37314502

RESUMO

Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.


Assuntos
Neoplasias , Rotaxanos , Humanos , Água , Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
19.
Nanomicro Lett ; 14(1): 205, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261666

RESUMO

Due to its high theoretical capacity (820 mAh g-1), low standard electrode potential (- 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.

20.
Adv Mater ; 34(4): e2106409, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34806240

RESUMO

With the growing demands for large-scale energy storage, Zn-ion batteries (ZIBs) with distinct advantages, including resource abundance, low-cost, high-safety, and acceptable energy density, are considered as potential substitutes for Li-ion batteries. Although numerous efforts are devoted to design and develop high performance cathodes and aqueous electrolytes for ZIBs, many challenges, such as hydrogen evolution reaction, water evaporation, and liquid leakage, have greatly hindered the development of aqueous ZIBs. Developing "beyond aqueous" electrolytes can be able to avoid these issues due to the absence of water, which are beneficial for the achieving of highly efficient ZIBs. In this review, the recent development of the "beyond aqueous" electrolytes, including conventional organic electrolytes, ionic liquid, all-solid-state, quasi-solid-state electrolytes, and deep eutectic electrolytes are presented. The critical issues and the corresponding strategies of the designing of "beyond aqueous" electrolytes for ZIBs are also summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA